/* * H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 motion vector predicion. * @author Michael Niedermayer <michaelni@gmx.at> */ #ifndef AVCODEC_H264_MVPRED_H #define AVCODEC_H264_MVPRED_H #include "internal.h" #include "avcodec.h" #include "h264.h" //#undef NDEBUG #include <assert.h> static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){ const int topright_ref= h->ref_cache[list][ i - 8 + part_width ]; MpegEncContext *s = &h->s; /* there is no consistent mapping of mvs to neighboring locations that will * make mbaff happy, so we can't move all this logic to fill_caches */ if(FRAME_MBAFF){ #define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4)\ const int xy = XY, y4 = Y4;\ const int mb_type = mb_types[xy+(y4>>2)*s->mb_stride];\ if(!USES_LIST(mb_type,list))\ return LIST_NOT_USED;\ mv = s->current_picture_ptr->f.motion_val[list][h->mb2b_xy[xy] + 3 + y4*h->b_stride];\ h->mv_cache[list][scan8[0]-2][0] = mv[0];\ h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\ return s->current_picture_ptr->f.ref_index[list][4*xy + 1 + (y4 & ~1)] REF_OP; if(topright_ref == PART_NOT_AVAILABLE && i >= scan8[0]+8 && (i&7)==4 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){ const uint32_t *mb_types = s->current_picture_ptr->f.mb_type; const int16_t *mv; AV_ZERO32(h->mv_cache[list][scan8[0]-2]); *C = h->mv_cache[list][scan8[0]-2]; if(!MB_FIELD && IS_INTERLACED(h->left_type[0])){ SET_DIAG_MV(*2, >>1, h->left_mb_xy[0]+s->mb_stride, (s->mb_y&1)*2+(i>>5)); } if(MB_FIELD && !IS_INTERLACED(h->left_type[0])){ // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK. SET_DIAG_MV(/2, <<1, h->left_mb_xy[i>=36], ((i>>2))&3); } } #undef SET_DIAG_MV } if(topright_ref != PART_NOT_AVAILABLE){ *C= h->mv_cache[list][ i - 8 + part_width ]; return topright_ref; }else{ tprintf(s->avctx, "topright MV not available\n"); *C= h->mv_cache[list][ i - 8 - 1 ]; return h->ref_cache[list][ i - 8 - 1 ]; } } /** * Get the predicted MV. * @param n the block index * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4) * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){ const int index8= scan8[n]; const int top_ref= h->ref_cache[list][ index8 - 8 ]; const int left_ref= h->ref_cache[list][ index8 - 1 ]; const int16_t * const A= h->mv_cache[list][ index8 - 1 ]; const int16_t * const B= h->mv_cache[list][ index8 - 8 ]; const int16_t * C; int diagonal_ref, match_count; assert(part_width==1 || part_width==2 || part_width==4); /* mv_cache B . . A T T T T U . . L . . , . U . . L . . . . U . . L . . , . . . . L . . . . */ diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width); match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref); tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count); if(match_count > 1){ //most common *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); }else if(match_count==1){ if(left_ref==ref){ *mx= A[0]; *my= A[1]; }else if(top_ref==ref){ *mx= B[0]; *my= B[1]; }else{ *mx= C[0]; *my= C[1]; } }else{ if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){ *mx= A[0]; *my= A[1]; }else{ *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); } } tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list); } /** * Get the directionally predicted 16x8 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int top_ref= h->ref_cache[list][ scan8[0] - 8 ]; const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ]; tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list); if(top_ref == ref){ *mx= B[0]; *my= B[1]; return; } }else{ const int left_ref= h->ref_cache[list][ scan8[8] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ]; tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } } //RARE pred_motion(h, n, 4, list, ref, mx, my); } /** * Get the directionally predicted 8x16 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static av_always_inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int left_ref= h->ref_cache[list][ scan8[0] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ]; tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } }else{ const int16_t * C; int diagonal_ref; diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2); tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list); if(diagonal_ref == ref){ *mx= C[0]; *my= C[1]; return; } } //RARE pred_motion(h, n, 2, list, ref, mx, my); } #define FIX_MV_MBAFF(type, refn, mvn, idx)\ if(FRAME_MBAFF){\ if(MB_FIELD){\ if(!IS_INTERLACED(type)){\ refn <<= 1;\ AV_COPY32(mvbuf[idx], mvn);\ mvbuf[idx][1] /= 2;\ mvn = mvbuf[idx];\ }\ }else{\ if(IS_INTERLACED(type)){\ refn >>= 1;\ AV_COPY32(mvbuf[idx], mvn);\ mvbuf[idx][1] <<= 1;\ mvn = mvbuf[idx];\ }\ }\ } static av_always_inline void pred_pskip_motion(H264Context * const h){ DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = {0}; DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2]; MpegEncContext * const s = &h->s; int8_t *ref = s->current_picture.f.ref_index[0]; int16_t (*mv)[2] = s->current_picture.f.motion_val[0]; int top_ref, left_ref, diagonal_ref, match_count, mx, my; const int16_t *A, *B, *C; int b_stride = h->b_stride; fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); /* To avoid doing an entire fill_decode_caches, we inline the relevant parts here. * FIXME: this is a partial duplicate of the logic in fill_decode_caches, but it's * faster this way. Is there a way to avoid this duplication? */ if(USES_LIST(h->left_type[LTOP], 0)){ left_ref = ref[4*h->left_mb_xy[LTOP] + 1 + (h->left_block[0]&~1)]; A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride*h->left_block[0]]; FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0); if(!(left_ref | AV_RN32A(A))){ goto zeromv; } }else if(h->left_type[LTOP]){ left_ref = LIST_NOT_USED; A = zeromv; }else{ goto zeromv; } if(USES_LIST(h->top_type, 0)){ top_ref = ref[4*h->top_mb_xy + 2]; B = mv[h->mb2b_xy[h->top_mb_xy] + 3*b_stride]; FIX_MV_MBAFF(h->top_type, top_ref, B, 1); if(!(top_ref | AV_RN32A(B))){ goto zeromv; } }else if(h->top_type){ top_ref = LIST_NOT_USED; B = zeromv; }else{ goto zeromv; } tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y); if(USES_LIST(h->topright_type, 0)){ diagonal_ref = ref[4*h->topright_mb_xy + 2]; C = mv[h->mb2b_xy[h->topright_mb_xy] + 3*b_stride]; FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2); }else if(h->topright_type){ diagonal_ref = LIST_NOT_USED; C = zeromv; }else{ if(USES_LIST(h->topleft_type, 0)){ diagonal_ref = ref[4*h->topleft_mb_xy + 1 + (h->topleft_partition & 2)]; C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride + (h->topleft_partition & 2*b_stride)]; FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2); }else if(h->topleft_type){ diagonal_ref = LIST_NOT_USED; C = zeromv; }else{ diagonal_ref = PART_NOT_AVAILABLE; C = zeromv; } } match_count= !diagonal_ref + !top_ref + !left_ref; tprintf(h->s.avctx, "pred_pskip_motion match_count=%d\n", match_count); if(match_count > 1){ mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); }else if(match_count==1){ if(!left_ref){ mx = A[0]; my = A[1]; }else if(!top_ref){ mx = B[0]; my = B[1]; }else{ mx = C[0]; my = C[1]; } }else{ mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); } fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); return; zeromv: fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4); return; } static void fill_decode_neighbors(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; static const uint8_t left_block_options[4][32]={ {0,1,2,3,7,10,8,11,3+0*4, 3+1*4, 3+2*4, 3+3*4, 1+4*4, 1+8*4, 1+5*4, 1+9*4}, {2,2,3,3,8,11,8,11,3+2*4, 3+2*4, 3+3*4, 3+3*4, 1+5*4, 1+9*4, 1+5*4, 1+9*4}, {0,0,1,1,7,10,7,10,3+0*4, 3+0*4, 3+1*4, 3+1*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4}, {0,2,0,2,7,10,7,10,3+0*4, 3+2*4, 3+0*4, 3+2*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4} }; h->topleft_partition= -1; top_xy = mb_xy - (s->mb_stride << MB_FIELD); /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ topleft_xy = top_xy - 1; topright_xy= top_xy + 1; left_xy[LBOT] = left_xy[LTOP] = mb_xy-1; h->left_block = left_block_options[0]; if(FRAME_MBAFF){ const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if(s->mb_y&1){ if (left_mb_field_flag != curr_mb_field_flag) { left_xy[LBOT] = left_xy[LTOP] = mb_xy - s->mb_stride - 1; if (curr_mb_field_flag) { left_xy[LBOT] += s->mb_stride; h->left_block = left_block_options[3]; } else { topleft_xy += s->mb_stride; // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition h->topleft_partition = 0; h->left_block = left_block_options[1]; } } }else{ if(curr_mb_field_flag){ topleft_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy - 1] >> 7) & 1) - 1); topright_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy + 1] >> 7) & 1) - 1); top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy ] >> 7) & 1) - 1); } if (left_mb_field_flag != curr_mb_field_flag) { if (curr_mb_field_flag) { left_xy[LBOT] += s->mb_stride; h->left_block = left_block_options[3]; } else { h->left_block = left_block_options[2]; } } } } h->topleft_mb_xy = topleft_xy; h->top_mb_xy = top_xy; h->topright_mb_xy= topright_xy; h->left_mb_xy[LTOP] = left_xy[LTOP]; h->left_mb_xy[LBOT] = left_xy[LBOT]; //FIXME do we need all in the context? h->topleft_type = s->current_picture.f.mb_type[topleft_xy]; h->top_type = s->current_picture.f.mb_type[top_xy]; h->topright_type = s->current_picture.f.mb_type[topright_xy]; h->left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]]; h->left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]]; if(FMO){ if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0; if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0; }else{ if(h->slice_table[topleft_xy ] != h->slice_num){ h->topleft_type = 0; if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0; } } if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0; } static void fill_decode_caches(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; int topleft_type, top_type, topright_type, left_type[LEFT_MBS]; const uint8_t * left_block= h->left_block; int i; uint8_t *nnz; uint8_t *nnz_cache; topleft_xy = h->topleft_mb_xy; top_xy = h->top_mb_xy; topright_xy = h->topright_mb_xy; left_xy[LTOP] = h->left_mb_xy[LTOP]; left_xy[LBOT] = h->left_mb_xy[LBOT]; topleft_type = h->topleft_type; top_type = h->top_type; topright_type = h->topright_type; left_type[LTOP]= h->left_type[LTOP]; left_type[LBOT]= h->left_type[LBOT]; if(!IS_SKIP(mb_type)){ if(IS_INTRA(mb_type)){ int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; h->topleft_samples_available= h->top_samples_available= h->left_samples_available= 0xFFFF; h->topright_samples_available= 0xEEEA; if(!(top_type & type_mask)){ h->topleft_samples_available= 0xB3FF; h->top_samples_available= 0x33FF; h->topright_samples_available= 0x26EA; } if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])){ if(IS_INTERLACED(mb_type)){ if(!(left_type[LTOP] & type_mask)){ h->topleft_samples_available&= 0xDFFF; h->left_samples_available&= 0x5FFF; } if(!(left_type[LBOT] & type_mask)){ h->topleft_samples_available&= 0xFF5F; h->left_samples_available&= 0xFF5F; } }else{ int left_typei = s->current_picture.f.mb_type[left_xy[LTOP] + s->mb_stride]; assert(left_xy[LTOP] == left_xy[LBOT]); if(!((left_typei & type_mask) && (left_type[LTOP] & type_mask))){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } }else{ if(!(left_type[LTOP] & type_mask)){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } if(!(topleft_type & type_mask)) h->topleft_samples_available&= 0x7FFF; if(!(topright_type & type_mask)) h->topright_samples_available&= 0xFBFF; if(IS_INTRA4x4(mb_type)){ if(IS_INTRA4x4(top_type)){ AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]); }else{ h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask); } for(i=0; i<2; i++){ if(IS_INTRA4x4(left_type[LEFT(i)])){ int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]]; h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]]; h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]]; }else{ h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[LEFT(i)] & type_mask); } } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) nnz_cache = h->non_zero_count_cache; if(top_type){ nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4+8* 0], &nnz[4*3]); if(!s->chroma_y_shift){ AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 7]); AV_COPY32(&nnz_cache[4+8*10], &nnz[4*11]); }else{ AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 5]); AV_COPY32(&nnz_cache[4+8*10], &nnz[4* 9]); } }else{ uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040; AV_WN32A(&nnz_cache[4+8* 0], top_empty); AV_WN32A(&nnz_cache[4+8* 5], top_empty); AV_WN32A(&nnz_cache[4+8*10], top_empty); } for (i=0; i<2; i++) { if(left_type[LEFT(i)]){ nnz = h->non_zero_count[left_xy[LEFT(i)]]; nnz_cache[3+8* 1 + 2*8*i]= nnz[left_block[8+0+2*i]]; nnz_cache[3+8* 2 + 2*8*i]= nnz[left_block[8+1+2*i]]; if(CHROMA444){ nnz_cache[3+8* 6 + 2*8*i]= nnz[left_block[8+0+2*i]+4*4]; nnz_cache[3+8* 7 + 2*8*i]= nnz[left_block[8+1+2*i]+4*4]; nnz_cache[3+8*11 + 2*8*i]= nnz[left_block[8+0+2*i]+8*4]; nnz_cache[3+8*12 + 2*8*i]= nnz[left_block[8+1+2*i]+8*4]; }else if(CHROMA422) { nnz_cache[3+8* 6 + 2*8*i]= nnz[left_block[8+0+2*i]-2+4*4]; nnz_cache[3+8* 7 + 2*8*i]= nnz[left_block[8+1+2*i]-2+4*4]; nnz_cache[3+8*11 + 2*8*i]= nnz[left_block[8+0+2*i]-2+8*4]; nnz_cache[3+8*12 + 2*8*i]= nnz[left_block[8+1+2*i]-2+8*4]; }else{ nnz_cache[3+8* 6 + 8*i]= nnz[left_block[8+4+2*i]]; nnz_cache[3+8*11 + 8*i]= nnz[left_block[8+5+2*i]]; } }else{ nnz_cache[3+8* 1 + 2*8*i]= nnz_cache[3+8* 2 + 2*8*i]= nnz_cache[3+8* 6 + 2*8*i]= nnz_cache[3+8* 7 + 2*8*i]= nnz_cache[3+8*11 + 2*8*i]= nnz_cache[3+8*12 + 2*8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; } } if( CABAC ) { // top_cbp if(top_type) { h->top_cbp = h->cbp_table[top_xy]; } else { h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; } // left_cbp if (left_type[LTOP]) { h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) | ((h->cbp_table[left_xy[LTOP]]>>(left_block[0]&(~1)))&2) | (((h->cbp_table[left_xy[LBOT]]>>(left_block[2]&(~1)))&2) << 2); } else { h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; } } } if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){ int list; int b_stride = h->b_stride; for(list=0; list<h->list_count; list++){ int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; int8_t *ref = s->current_picture.f.ref_index[list]; int16_t (*mv_cache)[2] = &h->mv_cache[list][scan8[0]]; int16_t (*mv)[2] = s->current_picture.f.motion_val[list]; if(!USES_LIST(mb_type, list)){ continue; } assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)); if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride; AV_COPY128(mv_cache[0 - 1*8], mv[b_xy + 0]); ref_cache[0 - 1*8]= ref_cache[1 - 1*8]= ref[4*top_xy + 2]; ref_cache[2 - 1*8]= ref_cache[3 - 1*8]= ref[4*top_xy + 3]; }else{ AV_ZERO128(mv_cache[0 - 1*8]); AV_WN32A(&ref_cache[0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101u); } if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){ for(i=0; i<2; i++){ int cache_idx = -1 + i*2*8; if(USES_LIST(left_type[LEFT(i)], list)){ const int b_xy= h->mb2b_xy[left_xy[LEFT(i)]] + 3; const int b8_xy= 4*left_xy[LEFT(i)] + 1; AV_COPY32(mv_cache[cache_idx ], mv[b_xy + b_stride*left_block[0+i*2]]); AV_COPY32(mv_cache[cache_idx+8], mv[b_xy + b_stride*left_block[1+i*2]]); ref_cache[cache_idx ]= ref[b8_xy + (left_block[0+i*2]&~1)]; ref_cache[cache_idx+8]= ref[b8_xy + (left_block[1+i*2]&~1)]; }else{ AV_ZERO32(mv_cache[cache_idx ]); AV_ZERO32(mv_cache[cache_idx+8]); ref_cache[cache_idx ]= ref_cache[cache_idx+8]= (left_type[LEFT(i)]) ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } }else{ if(USES_LIST(left_type[LTOP], list)){ const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy= 4*left_xy[LTOP] + 1; AV_COPY32(mv_cache[-1], mv[b_xy + b_stride*left_block[0]]); ref_cache[-1]= ref[b8_xy + (left_block[0]&~1)]; }else{ AV_ZERO32(mv_cache[-1]); ref_cache[-1]= left_type[LTOP] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if(USES_LIST(topright_type, list)){ const int b_xy= h->mb2b_xy[topright_xy] + 3*b_stride; AV_COPY32(mv_cache[4 - 1*8], mv[b_xy]); ref_cache[4 - 1*8]= ref[4*topright_xy + 2]; }else{ AV_ZERO32(mv_cache[4 - 1*8]); ref_cache[4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(ref_cache[2 - 1*8] < 0 || ref_cache[4 - 1*8] < 0){ if(USES_LIST(topleft_type, list)){ const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride + (h->topleft_partition & 2*b_stride); const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2); AV_COPY32(mv_cache[-1 - 1*8], mv[b_xy]); ref_cache[-1 - 1*8]= ref[b8_xy]; }else{ AV_ZERO32(mv_cache[-1 - 1*8]); ref_cache[-1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF) continue; if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))){ uint8_t (*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]]; uint8_t (*mvd)[2] = h->mvd_table[list]; ref_cache[2+8*0] = ref_cache[2+8*2] = PART_NOT_AVAILABLE; AV_ZERO32(mv_cache[2+8*0]); AV_ZERO32(mv_cache[2+8*2]); if( CABAC ) { if(USES_LIST(top_type, list)){ const int b_xy= h->mb2br_xy[top_xy]; AV_COPY64(mvd_cache[0 - 1*8], mvd[b_xy + 0]); }else{ AV_ZERO64(mvd_cache[0 - 1*8]); } if(USES_LIST(left_type[LTOP], list)){ const int b_xy= h->mb2br_xy[left_xy[LTOP]] + 6; AV_COPY16(mvd_cache[-1 + 0*8], mvd[b_xy - left_block[0]]); AV_COPY16(mvd_cache[-1 + 1*8], mvd[b_xy - left_block[1]]); }else{ AV_ZERO16(mvd_cache[-1 + 0*8]); AV_ZERO16(mvd_cache[-1 + 1*8]); } if(USES_LIST(left_type[LBOT], list)){ const int b_xy= h->mb2br_xy[left_xy[LBOT]] + 6; AV_COPY16(mvd_cache[-1 + 2*8], mvd[b_xy - left_block[2]]); AV_COPY16(mvd_cache[-1 + 3*8], mvd[b_xy - left_block[3]]); }else{ AV_ZERO16(mvd_cache[-1 + 2*8]); AV_ZERO16(mvd_cache[-1 + 3*8]); } AV_ZERO16(mvd_cache[2+8*0]); AV_ZERO16(mvd_cache[2+8*2]); if(h->slice_type_nos == AV_PICTURE_TYPE_B){ uint8_t *direct_cache = &h->direct_cache[scan8[0]]; uint8_t *direct_table = h->direct_table; fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16>>1, 1); if(IS_DIRECT(top_type)){ AV_WN32A(&direct_cache[-1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1)); }else if(IS_8X8(top_type)){ int b8_xy = 4*top_xy; direct_cache[0 - 1*8]= direct_table[b8_xy + 2]; direct_cache[2 - 1*8]= direct_table[b8_xy + 3]; }else{ AV_WN32A(&direct_cache[-1*8], 0x01010101*(MB_TYPE_16x16>>1)); } if(IS_DIRECT(left_type[LTOP])) direct_cache[-1 + 0*8]= MB_TYPE_DIRECT2>>1; else if(IS_8X8(left_type[LTOP])) direct_cache[-1 + 0*8]= direct_table[4*left_xy[LTOP] + 1 + (left_block[0]&~1)]; else direct_cache[-1 + 0*8]= MB_TYPE_16x16>>1; if(IS_DIRECT(left_type[LBOT])) direct_cache[-1 + 2*8]= MB_TYPE_DIRECT2>>1; else if(IS_8X8(left_type[LBOT])) direct_cache[-1 + 2*8]= direct_table[4*left_xy[LBOT] + 1 + (left_block[2]&~1)]; else direct_cache[-1 + 2*8]= MB_TYPE_16x16>>1; } } } if(FRAME_MBAFF){ #define MAP_MVS\ MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ MAP_F2F(scan8[0] - 1 + 0*8, left_type[LTOP])\ MAP_F2F(scan8[0] - 1 + 1*8, left_type[LTOP])\ MAP_F2F(scan8[0] - 1 + 2*8, left_type[LBOT])\ MAP_F2F(scan8[0] - 1 + 3*8, left_type[LBOT]) if(MB_FIELD){ #define MAP_F2F(idx, mb_type)\ if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] <<= 1;\ h->mv_cache[list][idx][1] /= 2;\ h->mvd_cache[list][idx][1] >>=1;\ } MAP_MVS #undef MAP_F2F }else{ #define MAP_F2F(idx, mb_type)\ if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] >>= 1;\ h->mv_cache[list][idx][1] <<= 1;\ h->mvd_cache[list][idx][1] <<= 1;\ } MAP_MVS #undef MAP_F2F } } } } h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]); } /** * decodes a P_SKIP or B_SKIP macroblock */ static void av_unused decode_mb_skip(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int mb_type=0; memset(h->non_zero_count[mb_xy], 0, 48); if(MB_FIELD) mb_type|= MB_TYPE_INTERLACED; if( h->slice_type_nos == AV_PICTURE_TYPE_B ) { // just for fill_caches. pred_direct_motion will set the real mb_type mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; if(h->direct_spatial_mv_pred){ fill_decode_neighbors(h, mb_type); fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... } ff_h264_pred_direct_motion(h, &mb_type); mb_type|= MB_TYPE_SKIP; } else { mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; fill_decode_neighbors(h, mb_type); pred_pskip_motion(h); } write_back_motion(h, mb_type); s->current_picture.f.mb_type[mb_xy] = mb_type; s->current_picture.f.qscale_table[mb_xy] = s->qscale; h->slice_table[ mb_xy ]= h->slice_num; h->prev_mb_skipped= 1; } #endif /* AVCODEC_H264_MVPRED_H */