/* * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/dict.h" #include "libavutil/error.h" #include "libavutil/frame.h" #include "libavutil/log.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "avresample.h" #include "internal.h" #include "audio_data.h" #include "audio_convert.h" #include "audio_mix.h" #include "resample.h" int avresample_open(AVAudioResampleContext *avr) { int ret; if (avresample_is_open(avr)) { av_log(avr, AV_LOG_ERROR, "The resampling context is already open.\n"); return AVERROR(EINVAL); } /* set channel mixing parameters */ avr->in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); if (avr->in_channels <= 0 || avr->in_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid input channel layout: %"PRIu64"\n", avr->in_channel_layout); return AVERROR(EINVAL); } avr->out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if (avr->out_channels <= 0 || avr->out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid output channel layout: %"PRIu64"\n", avr->out_channel_layout); return AVERROR(EINVAL); } avr->resample_channels = FFMIN(avr->in_channels, avr->out_channels); avr->downmix_needed = avr->in_channels > avr->out_channels; avr->upmix_needed = avr->out_channels > avr->in_channels || (!avr->downmix_needed && (avr->mix_matrix || avr->in_channel_layout != avr->out_channel_layout)); avr->mixing_needed = avr->downmix_needed || avr->upmix_needed; /* set resampling parameters */ avr->resample_needed = avr->in_sample_rate != avr->out_sample_rate || avr->force_resampling; /* select internal sample format if not specified by the user */ if (avr->internal_sample_fmt == AV_SAMPLE_FMT_NONE && (avr->mixing_needed || avr->resample_needed)) { enum AVSampleFormat in_fmt = av_get_planar_sample_fmt(avr->in_sample_fmt); enum AVSampleFormat out_fmt = av_get_planar_sample_fmt(avr->out_sample_fmt); int max_bps = FFMAX(av_get_bytes_per_sample(in_fmt), av_get_bytes_per_sample(out_fmt)); if (max_bps <= 2) { avr->internal_sample_fmt = AV_SAMPLE_FMT_S16P; } else if (avr->mixing_needed) { avr->internal_sample_fmt = AV_SAMPLE_FMT_FLTP; } else { if (max_bps <= 4) { if (in_fmt == AV_SAMPLE_FMT_S32P || out_fmt == AV_SAMPLE_FMT_S32P) { if (in_fmt == AV_SAMPLE_FMT_FLTP || out_fmt == AV_SAMPLE_FMT_FLTP) { /* if one is s32 and the other is flt, use dbl */ avr->internal_sample_fmt = AV_SAMPLE_FMT_DBLP; } else { /* if one is s32 and the other is s32, s16, or u8, use s32 */ avr->internal_sample_fmt = AV_SAMPLE_FMT_S32P; } } else { /* if one is flt and the other is flt, s16 or u8, use flt */ avr->internal_sample_fmt = AV_SAMPLE_FMT_FLTP; } } else { /* if either is dbl, use dbl */ avr->internal_sample_fmt = AV_SAMPLE_FMT_DBLP; } } av_log(avr, AV_LOG_DEBUG, "Using %s as internal sample format\n", av_get_sample_fmt_name(avr->internal_sample_fmt)); } /* we may need to add an extra conversion in order to remap channels if the output format is not planar */ if (avr->use_channel_map && !avr->mixing_needed && !avr->resample_needed && !ff_sample_fmt_is_planar(avr->out_sample_fmt, avr->out_channels)) { avr->internal_sample_fmt = av_get_planar_sample_fmt(avr->out_sample_fmt); } /* set sample format conversion parameters */ if (avr->resample_needed || avr->mixing_needed) avr->in_convert_needed = avr->in_sample_fmt != avr->internal_sample_fmt; else avr->in_convert_needed = avr->use_channel_map && !ff_sample_fmt_is_planar(avr->out_sample_fmt, avr->out_channels); if (avr->resample_needed || avr->mixing_needed || avr->in_convert_needed) avr->out_convert_needed = avr->internal_sample_fmt != avr->out_sample_fmt; else avr->out_convert_needed = avr->in_sample_fmt != avr->out_sample_fmt; avr->in_copy_needed = !avr->in_convert_needed && (avr->mixing_needed || (avr->use_channel_map && avr->resample_needed)); if (avr->use_channel_map) { if (avr->in_copy_needed) { avr->remap_point = REMAP_IN_COPY; av_log(avr, AV_LOG_TRACE, "remap channels during in_copy\n"); } else if (avr->in_convert_needed) { avr->remap_point = REMAP_IN_CONVERT; av_log(avr, AV_LOG_TRACE, "remap channels during in_convert\n"); } else if (avr->out_convert_needed) { avr->remap_point = REMAP_OUT_CONVERT; av_log(avr, AV_LOG_TRACE, "remap channels during out_convert\n"); } else { avr->remap_point = REMAP_OUT_COPY; av_log(avr, AV_LOG_TRACE, "remap channels during out_copy\n"); } #ifdef DEBUG { int ch; av_log(avr, AV_LOG_TRACE, "output map: "); if (avr->ch_map_info.do_remap) for (ch = 0; ch < avr->in_channels; ch++) av_log(avr, AV_LOG_TRACE, " % 2d", avr->ch_map_info.channel_map[ch]); else av_log(avr, AV_LOG_TRACE, "n/a"); av_log(avr, AV_LOG_TRACE, "\n"); av_log(avr, AV_LOG_TRACE, "copy map: "); if (avr->ch_map_info.do_copy) for (ch = 0; ch < avr->in_channels; ch++) av_log(avr, AV_LOG_TRACE, " % 2d", avr->ch_map_info.channel_copy[ch]); else av_log(avr, AV_LOG_TRACE, "n/a"); av_log(avr, AV_LOG_TRACE, "\n"); av_log(avr, AV_LOG_TRACE, "zero map: "); if (avr->ch_map_info.do_zero) for (ch = 0; ch < avr->in_channels; ch++) av_log(avr, AV_LOG_TRACE, " % 2d", avr->ch_map_info.channel_zero[ch]); else av_log(avr, AV_LOG_TRACE, "n/a"); av_log(avr, AV_LOG_TRACE, "\n"); av_log(avr, AV_LOG_TRACE, "input map: "); for (ch = 0; ch < avr->in_channels; ch++) av_log(avr, AV_LOG_TRACE, " % 2d", avr->ch_map_info.input_map[ch]); av_log(avr, AV_LOG_TRACE, "\n"); } #endif } else avr->remap_point = REMAP_NONE; /* allocate buffers */ if (avr->in_copy_needed || avr->in_convert_needed) { avr->in_buffer = ff_audio_data_alloc(FFMAX(avr->in_channels, avr->out_channels), 0, avr->internal_sample_fmt, "in_buffer"); if (!avr->in_buffer) { ret = AVERROR(EINVAL); goto error; } } if (avr->resample_needed) { avr->resample_out_buffer = ff_audio_data_alloc(avr->out_channels, 1024, avr->internal_sample_fmt, "resample_out_buffer"); if (!avr->resample_out_buffer) { ret = AVERROR(EINVAL); goto error; } } if (avr->out_convert_needed) { avr->out_buffer = ff_audio_data_alloc(avr->out_channels, 0, avr->out_sample_fmt, "out_buffer"); if (!avr->out_buffer) { ret = AVERROR(EINVAL); goto error; } } avr->out_fifo = av_audio_fifo_alloc(avr->out_sample_fmt, avr->out_channels, 1024); if (!avr->out_fifo) { ret = AVERROR(ENOMEM); goto error; } /* setup contexts */ if (avr->in_convert_needed) { avr->ac_in = ff_audio_convert_alloc(avr, avr->internal_sample_fmt, avr->in_sample_fmt, avr->in_channels, avr->in_sample_rate, avr->remap_point == REMAP_IN_CONVERT); if (!avr->ac_in) { ret = AVERROR(ENOMEM); goto error; } } if (avr->out_convert_needed) { enum AVSampleFormat src_fmt; if (avr->in_convert_needed) src_fmt = avr->internal_sample_fmt; else src_fmt = avr->in_sample_fmt; avr->ac_out = ff_audio_convert_alloc(avr, avr->out_sample_fmt, src_fmt, avr->out_channels, avr->out_sample_rate, avr->remap_point == REMAP_OUT_CONVERT); if (!avr->ac_out) { ret = AVERROR(ENOMEM); goto error; } } if (avr->resample_needed) { avr->resample = ff_audio_resample_init(avr); if (!avr->resample) { ret = AVERROR(ENOMEM); goto error; } } if (avr->mixing_needed) { avr->am = ff_audio_mix_alloc(avr); if (!avr->am) { ret = AVERROR(ENOMEM); goto error; } } return 0; error: avresample_close(avr); return ret; } int avresample_is_open(AVAudioResampleContext *avr) { return !!avr->out_fifo; } void avresample_close(AVAudioResampleContext *avr) { ff_audio_data_free(&avr->in_buffer); ff_audio_data_free(&avr->resample_out_buffer); ff_audio_data_free(&avr->out_buffer); av_audio_fifo_free(avr->out_fifo); avr->out_fifo = NULL; ff_audio_convert_free(&avr->ac_in); ff_audio_convert_free(&avr->ac_out); ff_audio_resample_free(&avr->resample); ff_audio_mix_free(&avr->am); av_freep(&avr->mix_matrix); avr->use_channel_map = 0; } void avresample_free(AVAudioResampleContext **avr) { if (!*avr) return; avresample_close(*avr); av_opt_free(*avr); av_freep(avr); } static int handle_buffered_output(AVAudioResampleContext *avr, AudioData *output, AudioData *converted) { int ret; if (!output || av_audio_fifo_size(avr->out_fifo) > 0 || (converted && output->allocated_samples < converted->nb_samples)) { if (converted) { /* if there are any samples in the output FIFO or if the user-supplied output buffer is not large enough for all samples, we add to the output FIFO */ av_log(avr, AV_LOG_TRACE, "[FIFO] add %s to out_fifo\n", converted->name); ret = ff_audio_data_add_to_fifo(avr->out_fifo, converted, 0, converted->nb_samples); if (ret < 0) return ret; } /* if the user specified an output buffer, read samples from the output FIFO to the user output */ if (output && output->allocated_samples > 0) { av_log(avr, AV_LOG_TRACE, "[FIFO] read from out_fifo to output\n"); av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return ff_audio_data_read_from_fifo(avr->out_fifo, output, output->allocated_samples); } } else if (converted) { /* copy directly to output if it is large enough or there is not any data in the output FIFO */ av_log(avr, AV_LOG_TRACE, "[copy] %s to output\n", converted->name); output->nb_samples = 0; ret = ff_audio_data_copy(output, converted, avr->remap_point == REMAP_OUT_COPY ? &avr->ch_map_info : NULL); if (ret < 0) return ret; av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return output->nb_samples; } av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return 0; } int attribute_align_arg avresample_convert(AVAudioResampleContext *avr, uint8_t **output, int out_plane_size, int out_samples, uint8_t * const *input, int in_plane_size, int in_samples) { AudioData input_buffer; AudioData output_buffer; AudioData *current_buffer; int ret, direct_output; /* reset internal buffers */ if (avr->in_buffer) { avr->in_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->in_buffer, avr->in_buffer->allocated_channels); } if (avr->resample_out_buffer) { avr->resample_out_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->resample_out_buffer, avr->resample_out_buffer->allocated_channels); } if (avr->out_buffer) { avr->out_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->out_buffer, avr->out_buffer->allocated_channels); } av_log(avr, AV_LOG_TRACE, "[start conversion]\n"); /* initialize output_buffer with output data */ direct_output = output && av_audio_fifo_size(avr->out_fifo) == 0; if (output) { ret = ff_audio_data_init(&output_buffer, output, out_plane_size, avr->out_channels, out_samples, avr->out_sample_fmt, 0, "output"); if (ret < 0) return ret; output_buffer.nb_samples = 0; } if (input) { /* initialize input_buffer with input data */ ret = ff_audio_data_init(&input_buffer, input, in_plane_size, avr->in_channels, in_samples, avr->in_sample_fmt, 1, "input"); if (ret < 0) return ret; current_buffer = &input_buffer; if (avr->upmix_needed && !avr->in_convert_needed && !avr->resample_needed && !avr->out_convert_needed && direct_output && out_samples >= in_samples) { /* in some rare cases we can copy input to output and upmix directly in the output buffer */ av_log(avr, AV_LOG_TRACE, "[copy] %s to output\n", current_buffer->name); ret = ff_audio_data_copy(&output_buffer, current_buffer, avr->remap_point == REMAP_OUT_COPY ? &avr->ch_map_info : NULL); if (ret < 0) return ret; current_buffer = &output_buffer; } else if (avr->remap_point == REMAP_OUT_COPY && (!direct_output || out_samples < in_samples)) { /* if remapping channels during output copy, we may need to * use an intermediate buffer in order to remap before adding * samples to the output fifo */ av_log(avr, AV_LOG_TRACE, "[copy] %s to out_buffer\n", current_buffer->name); ret = ff_audio_data_copy(avr->out_buffer, current_buffer, &avr->ch_map_info); if (ret < 0) return ret; current_buffer = avr->out_buffer; } else if (avr->in_copy_needed || avr->in_convert_needed) { /* if needed, copy or convert input to in_buffer, and downmix if applicable */ if (avr->in_convert_needed) { ret = ff_audio_data_realloc(avr->in_buffer, current_buffer->nb_samples); if (ret < 0) return ret; av_log(avr, AV_LOG_TRACE, "[convert] %s to in_buffer\n", current_buffer->name); ret = ff_audio_convert(avr->ac_in, avr->in_buffer, current_buffer); if (ret < 0) return ret; } else { av_log(avr, AV_LOG_TRACE, "[copy] %s to in_buffer\n", current_buffer->name); ret = ff_audio_data_copy(avr->in_buffer, current_buffer, avr->remap_point == REMAP_IN_COPY ? &avr->ch_map_info : NULL); if (ret < 0) return ret; } ff_audio_data_set_channels(avr->in_buffer, avr->in_channels); if (avr->downmix_needed) { av_log(avr, AV_LOG_TRACE, "[downmix] in_buffer\n"); ret = ff_audio_mix(avr->am, avr->in_buffer); if (ret < 0) return ret; } current_buffer = avr->in_buffer; } } else { /* flush resampling buffer and/or output FIFO if input is NULL */ if (!avr->resample_needed) return handle_buffered_output(avr, output ? &output_buffer : NULL, NULL); current_buffer = NULL; } if (avr->resample_needed) { AudioData *resample_out; if (!avr->out_convert_needed && direct_output && out_samples > 0) resample_out = &output_buffer; else resample_out = avr->resample_out_buffer; av_log(avr, AV_LOG_TRACE, "[resample] %s to %s\n", current_buffer ? current_buffer->name : "null", resample_out->name); ret = ff_audio_resample(avr->resample, resample_out, current_buffer); if (ret < 0) return ret; /* if resampling did not produce any samples, just return 0 */ if (resample_out->nb_samples == 0) { av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return 0; } current_buffer = resample_out; } if (avr->upmix_needed) { av_log(avr, AV_LOG_TRACE, "[upmix] %s\n", current_buffer->name); ret = ff_audio_mix(avr->am, current_buffer); if (ret < 0) return ret; } /* if we resampled or upmixed directly to output, return here */ if (current_buffer == &output_buffer) { av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return current_buffer->nb_samples; } if (avr->out_convert_needed) { if (direct_output && out_samples >= current_buffer->nb_samples) { /* convert directly to output */ av_log(avr, AV_LOG_TRACE, "[convert] %s to output\n", current_buffer->name); ret = ff_audio_convert(avr->ac_out, &output_buffer, current_buffer); if (ret < 0) return ret; av_log(avr, AV_LOG_TRACE, "[end conversion]\n"); return output_buffer.nb_samples; } else { ret = ff_audio_data_realloc(avr->out_buffer, current_buffer->nb_samples); if (ret < 0) return ret; av_log(avr, AV_LOG_TRACE, "[convert] %s to out_buffer\n", current_buffer->name); ret = ff_audio_convert(avr->ac_out, avr->out_buffer, current_buffer); if (ret < 0) return ret; current_buffer = avr->out_buffer; } } return handle_buffered_output(avr, output ? &output_buffer : NULL, current_buffer); } int avresample_config(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in) { if (avresample_is_open(avr)) { avresample_close(avr); } if (in) { avr->in_channel_layout = in->channel_layout; avr->in_sample_rate = in->sample_rate; avr->in_sample_fmt = in->format; } if (out) { avr->out_channel_layout = out->channel_layout; avr->out_sample_rate = out->sample_rate; avr->out_sample_fmt = out->format; } return 0; } static int config_changed(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in) { int ret = 0; if (in) { if (avr->in_channel_layout != in->channel_layout || avr->in_sample_rate != in->sample_rate || avr->in_sample_fmt != in->format) { ret |= AVERROR_INPUT_CHANGED; } } if (out) { if (avr->out_channel_layout != out->channel_layout || avr->out_sample_rate != out->sample_rate || avr->out_sample_fmt != out->format) { ret |= AVERROR_OUTPUT_CHANGED; } } return ret; } static inline int convert_frame(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in) { int ret; uint8_t **out_data = NULL, **in_data = NULL; int out_linesize = 0, in_linesize = 0; int out_nb_samples = 0, in_nb_samples = 0; if (out) { out_data = out->extended_data; out_linesize = out->linesize[0]; out_nb_samples = out->nb_samples; } if (in) { in_data = in->extended_data; in_linesize = in->linesize[0]; in_nb_samples = in->nb_samples; } ret = avresample_convert(avr, out_data, out_linesize, out_nb_samples, in_data, in_linesize, in_nb_samples); if (ret < 0) { if (out) out->nb_samples = 0; return ret; } if (out) out->nb_samples = ret; return 0; } static inline int available_samples(AVFrame *out) { int samples; int bytes_per_sample = av_get_bytes_per_sample(out->format); if (!bytes_per_sample) return AVERROR(EINVAL); samples = out->linesize[0] / bytes_per_sample; if (av_sample_fmt_is_planar(out->format)) { return samples; } else { int channels = av_get_channel_layout_nb_channels(out->channel_layout); return samples / channels; } } int avresample_convert_frame(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in) { int ret, setup = 0; if (!avresample_is_open(avr)) { if ((ret = avresample_config(avr, out, in)) < 0) return ret; if ((ret = avresample_open(avr)) < 0) return ret; setup = 1; } else { // return as is or reconfigure for input changes? if ((ret = config_changed(avr, out, in))) return ret; } if (out) { if (!out->linesize[0]) { out->nb_samples = avresample_get_out_samples(avr, in->nb_samples); if ((ret = av_frame_get_buffer(out, 0)) < 0) { if (setup) avresample_close(avr); return ret; } } else { if (!out->nb_samples) out->nb_samples = available_samples(out); } } return convert_frame(avr, out, in); } int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix, int stride) { int in_channels, out_channels, i, o; if (avr->am) return ff_audio_mix_get_matrix(avr->am, matrix, stride); in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS || out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n"); return AVERROR(EINVAL); } if (!avr->mix_matrix) { av_log(avr, AV_LOG_ERROR, "matrix is not set\n"); return AVERROR(EINVAL); } for (o = 0; o < out_channels; o++) for (i = 0; i < in_channels; i++) matrix[o * stride + i] = avr->mix_matrix[o * in_channels + i]; return 0; } int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix, int stride) { int in_channels, out_channels, i, o; if (avr->am) return ff_audio_mix_set_matrix(avr->am, matrix, stride); in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS || out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n"); return AVERROR(EINVAL); } if (avr->mix_matrix) av_freep(&avr->mix_matrix); avr->mix_matrix = av_malloc(in_channels * out_channels * sizeof(*avr->mix_matrix)); if (!avr->mix_matrix) return AVERROR(ENOMEM); for (o = 0; o < out_channels; o++) for (i = 0; i < in_channels; i++) avr->mix_matrix[o * in_channels + i] = matrix[o * stride + i]; return 0; } int avresample_set_channel_mapping(AVAudioResampleContext *avr, const int *channel_map) { ChannelMapInfo *info = &avr->ch_map_info; int in_channels, ch, i; in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); if (in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid input channel layout\n"); return AVERROR(EINVAL); } memset(info, 0, sizeof(*info)); memset(info->input_map, -1, sizeof(info->input_map)); for (ch = 0; ch < in_channels; ch++) { if (channel_map[ch] >= in_channels) { av_log(avr, AV_LOG_ERROR, "Invalid channel map\n"); return AVERROR(EINVAL); } if (channel_map[ch] < 0) { info->channel_zero[ch] = 1; info->channel_map[ch] = -1; info->do_zero = 1; } else if (info->input_map[channel_map[ch]] >= 0) { info->channel_copy[ch] = info->input_map[channel_map[ch]]; info->channel_map[ch] = -1; info->do_copy = 1; } else { info->channel_map[ch] = channel_map[ch]; info->input_map[channel_map[ch]] = ch; info->do_remap = 1; } } /* Fill-in unmapped input channels with unmapped output channels. This is used when remapping during conversion from interleaved to planar format. */ for (ch = 0, i = 0; ch < in_channels && i < in_channels; ch++, i++) { while (ch < in_channels && info->input_map[ch] >= 0) ch++; while (i < in_channels && info->channel_map[i] >= 0) i++; if (ch >= in_channels || i >= in_channels) break; info->input_map[ch] = i; } avr->use_channel_map = 1; return 0; } int avresample_available(AVAudioResampleContext *avr) { return av_audio_fifo_size(avr->out_fifo); } int avresample_get_out_samples(AVAudioResampleContext *avr, int in_nb_samples) { int64_t samples = avresample_get_delay(avr) + (int64_t)in_nb_samples; if (avr->resample_needed) { samples = av_rescale_rnd(samples, avr->out_sample_rate, avr->in_sample_rate, AV_ROUND_UP); } samples += avresample_available(avr); if (samples > INT_MAX) return AVERROR(EINVAL); return samples; } int avresample_read(AVAudioResampleContext *avr, uint8_t **output, int nb_samples) { if (!output) return av_audio_fifo_drain(avr->out_fifo, nb_samples); return av_audio_fifo_read(avr->out_fifo, (void**)output, nb_samples); } unsigned avresample_version(void) { return LIBAVRESAMPLE_VERSION_INT; } const char *avresample_license(void) { #define LICENSE_PREFIX "libavresample license: " return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1; } const char *avresample_configuration(void) { return LIBAV_CONFIGURATION; }