/* * Flash Screen Video Version 2 encoder * Copyright (C) 2009 Joshua Warner * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Flash Screen Video Version 2 encoder * @author Joshua Warner */ /* Differences from version 1 stream: * NOTE: Currently, the only player that supports version 2 streams is Adobe Flash Player itself. * * Supports sending only a range of scanlines in a block, * indicating a difference from the corresponding block in the last keyframe. * * Supports initializing the zlib dictionary with data from the corresponding * block in the last keyframe, to improve compression. * * Supports a hybrid 15-bit rgb / 7-bit palette color space. */ /* TODO: * Don't keep Block structures for both current frame and keyframe. * Make better heuristics for deciding stream parameters (optimum_* functions). Currently these return constants. * Figure out how to encode palette information in the stream, choose an optimum palette at each keyframe. * Figure out how the zlibPrimeCompressCurrent flag works, implement support. * Find other sample files (that weren't generated here), develop a decoder. */ #include <stdio.h> #include <stdlib.h> #include <zlib.h> #include "libavutil/imgutils.h" #include "avcodec.h" #include "internal.h" #include "put_bits.h" #include "bytestream.h" #define HAS_IFRAME_IMAGE 0x02 #define HAS_PALLET_INFO 0x01 #define COLORSPACE_BGR 0x00 #define COLORSPACE_15_7 0x10 #define HAS_DIFF_BLOCKS 0x04 #define ZLIB_PRIME_COMPRESS_CURRENT 0x02 #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01 // Disables experimental "smart" parameter-choosing code, as well as the statistics that it depends on. // At the moment, the "smart" code is a great example of how the parameters *shouldn't* be chosen. #define FLASHSV2_DUMB typedef struct Block { uint8_t *enc; uint8_t *sl_begin, *sl_end; int enc_size; uint8_t *data; unsigned long data_size; uint8_t start, len; uint8_t dirty; uint8_t col, row, width, height; uint8_t flags; } Block; typedef struct Palette { unsigned colors[128]; uint8_t index[1 << 15]; } Palette; typedef struct FlashSV2Context { AVCodecContext *avctx; uint8_t *current_frame; uint8_t *key_frame; uint8_t *encbuffer; uint8_t *keybuffer; uint8_t *databuffer; uint8_t *blockbuffer; int blockbuffer_size; Block *frame_blocks; Block *key_blocks; int frame_size; int blocks_size; int use15_7, dist, comp; int rows, cols; int last_key_frame; int image_width, image_height; int block_width, block_height; uint8_t flags; uint8_t use_custom_palette; uint8_t palette_type; ///< 0=>default, 1=>custom - changed when palette regenerated. Palette palette; #ifndef FLASHSV2_DUMB double tot_blocks; ///< blocks encoded since last keyframe double diff_blocks; ///< blocks that were different since last keyframe double tot_lines; ///< total scanlines in image since last keyframe double diff_lines; ///< scanlines that were different since last keyframe double raw_size; ///< size of raw frames since last keyframe double comp_size; ///< size of compressed data since last keyframe double uncomp_size; ///< size of uncompressed data since last keyframe double total_bits; ///< total bits written to stream so far #endif } FlashSV2Context; static av_cold void cleanup(FlashSV2Context * s) { av_freep(&s->encbuffer); av_freep(&s->keybuffer); av_freep(&s->databuffer); av_freep(&s->blockbuffer); av_freep(&s->current_frame); av_freep(&s->key_frame); av_freep(&s->frame_blocks); av_freep(&s->key_blocks); } static void init_blocks(FlashSV2Context * s, Block * blocks, uint8_t * encbuf, uint8_t * databuf) { int row, col; Block *b; for (col = 0; col < s->cols; col++) { for (row = 0; row < s->rows; row++) { b = blocks + (col + row * s->cols); b->width = (col < s->cols - 1) ? s->block_width : s->image_width - col * s->block_width; b->height = (row < s->rows - 1) ? s->block_height : s->image_height - row * s->block_height; b->row = row; b->col = col; b->enc = encbuf; b->data = databuf; encbuf += b->width * b->height * 3; databuf += !databuf ? 0 : b->width * b->height * 6; } } } static void reset_stats(FlashSV2Context * s) { #ifndef FLASHSV2_DUMB s->diff_blocks = 0.1; s->tot_blocks = 1; s->diff_lines = 0.1; s->tot_lines = 1; s->raw_size = s->comp_size = s->uncomp_size = 10; #endif } static av_cold int flashsv2_encode_init(AVCodecContext * avctx) { FlashSV2Context *s = avctx->priv_data; s->avctx = avctx; s->comp = avctx->compression_level; if (s->comp == -1) s->comp = 9; if (s->comp < 0 || s->comp > 9) { av_log(avctx, AV_LOG_ERROR, "Compression level should be 0-9, not %d\n", s->comp); return -1; } if ((avctx->width > 4095) || (avctx->height > 4095)) { av_log(avctx, AV_LOG_ERROR, "Input dimensions too large, input must be max 4095x4095 !\n"); return -1; } if ((avctx->width < 16) || (avctx->height < 16)) { av_log(avctx, AV_LOG_ERROR, "Input dimensions too small, input must be at least 16x16 !\n"); return -1; } if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0) return -1; s->last_key_frame = 0; s->image_width = avctx->width; s->image_height = avctx->height; s->block_width = (s->image_width / 12) & ~15; s->block_height = (s->image_height / 12) & ~15; if(!s->block_width) s->block_width = 1; if(!s->block_height) s->block_height = 1; s->rows = (s->image_height + s->block_height - 1) / s->block_height; s->cols = (s->image_width + s->block_width - 1) / s->block_width; s->frame_size = s->image_width * s->image_height * 3; s->blocks_size = s->rows * s->cols * sizeof(Block); s->encbuffer = av_mallocz(s->frame_size); s->keybuffer = av_mallocz(s->frame_size); s->databuffer = av_mallocz(s->frame_size * 6); s->current_frame = av_mallocz(s->frame_size); s->key_frame = av_mallocz(s->frame_size); s->frame_blocks = av_mallocz(s->blocks_size); s->key_blocks = av_mallocz(s->blocks_size); s->blockbuffer = NULL; s->blockbuffer_size = 0; init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer); init_blocks(s, s->key_blocks, s->keybuffer, 0); reset_stats(s); #ifndef FLASHSV2_DUMB s->total_bits = 1; #endif s->use_custom_palette = 0; s->palette_type = -1; // so that the palette will be generated in reconfigure_at_keyframe if (!s->encbuffer || !s->keybuffer || !s->databuffer || !s->current_frame || !s->key_frame || !s->key_blocks || !s->frame_blocks) { av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n"); cleanup(s); return -1; } return 0; } static int new_key_frame(FlashSV2Context * s) { int i; memcpy(s->key_blocks, s->frame_blocks, s->blocks_size); memcpy(s->key_frame, s->current_frame, s->frame_size); for (i = 0; i < s->rows * s->cols; i++) { s->key_blocks[i].enc += (s->keybuffer - s->encbuffer); s->key_blocks[i].sl_begin = 0; s->key_blocks[i].sl_end = 0; s->key_blocks[i].data = 0; } memcpy(s->keybuffer, s->encbuffer, s->frame_size); return 0; } static int write_palette(FlashSV2Context * s, uint8_t * buf, int buf_size) { //this isn't implemented yet! Default palette only! return -1; } static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size) { PutBitContext pb; int buf_pos, len; if (buf_size < 5) return -1; init_put_bits(&pb, buf, buf_size); put_bits(&pb, 4, (s->block_width >> 4) - 1); put_bits(&pb, 12, s->image_width); put_bits(&pb, 4, (s->block_height >> 4) - 1); put_bits(&pb, 12, s->image_height); flush_put_bits(&pb); buf_pos = 4; buf[buf_pos++] = s->flags; if (s->flags & HAS_PALLET_INFO) { len = write_palette(s, buf + buf_pos, buf_size - buf_pos); if (len < 0) return -1; buf_pos += len; } return buf_pos; } static int write_block(Block * b, uint8_t * buf, int buf_size) { int buf_pos = 0; unsigned block_size = b->data_size; if (b->flags & HAS_DIFF_BLOCKS) block_size += 2; if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) block_size += 2; if (block_size > 0) block_size += 1; if (buf_size < block_size + 2) return -1; buf[buf_pos++] = block_size >> 8; buf[buf_pos++] = block_size; if (block_size == 0) return buf_pos; buf[buf_pos++] = b->flags; if (b->flags & HAS_DIFF_BLOCKS) { buf[buf_pos++] = (b->start); buf[buf_pos++] = (b->len); } if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) { //This feature of the format is poorly understood, and as of now, unused. buf[buf_pos++] = (b->col); buf[buf_pos++] = (b->row); } memcpy(buf + buf_pos, b->data, b->data_size); buf_pos += b->data_size; return buf_pos; } static int encode_zlib(Block * b, uint8_t * buf, unsigned long *buf_size, int comp) { int res = compress2(buf, buf_size, b->sl_begin, b->sl_end - b->sl_begin, comp); return res == Z_OK ? 0 : -1; } static int encode_zlibprime(Block * b, Block * prime, uint8_t * buf, int *buf_size, int comp) { z_stream s; int res; s.zalloc = NULL; s.zfree = NULL; s.opaque = NULL; res = deflateInit(&s, comp); if (res < 0) return -1; s.next_in = prime->enc; s.avail_in = prime->enc_size; while (s.avail_in > 0) { s.next_out = buf; s.avail_out = *buf_size; res = deflate(&s, Z_SYNC_FLUSH); if (res < 0) return -1; } s.next_in = b->sl_begin; s.avail_in = b->sl_end - b->sl_begin; s.next_out = buf; s.avail_out = *buf_size; res = deflate(&s, Z_FINISH); deflateEnd(&s); *buf_size -= s.avail_out; if (res != Z_STREAM_END) return -1; return 0; } static int encode_bgr(Block * b, const uint8_t * src, int stride) { int i; uint8_t *ptr = b->enc; for (i = 0; i < b->start; i++) memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3); b->sl_begin = ptr + i * b->width * 3; for (; i < b->start + b->len; i++) memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3); b->sl_end = ptr + i * b->width * 3; for (; i < b->height; i++) memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3); b->enc_size = ptr + i * b->width * 3 - b->enc; return b->enc_size; } static inline unsigned pixel_color15(const uint8_t * src) { return (src[0] >> 3) | ((src[1] & 0xf8) << 2) | ((src[2] & 0xf8) << 7); } static inline unsigned int chroma_diff(unsigned int c1, unsigned int c2) { #define ABSDIFF(a,b) (abs((int)(a)-(int)(b))) unsigned int t1 = (c1 & 0x000000ff) + ((c1 & 0x0000ff00) >> 8) + ((c1 & 0x00ff0000) >> 16); unsigned int t2 = (c2 & 0x000000ff) + ((c2 & 0x0000ff00) >> 8) + ((c2 & 0x00ff0000) >> 16); return ABSDIFF(t1, t2) + ABSDIFF(c1 & 0x000000ff, c2 & 0x000000ff) + ABSDIFF((c1 & 0x0000ff00) >> 8 , (c2 & 0x0000ff00) >> 8) + ABSDIFF((c1 & 0x00ff0000) >> 16, (c2 & 0x00ff0000) >> 16); } static inline int pixel_color7_fast(Palette * palette, unsigned c15) { return palette->index[c15]; } static int pixel_color7_slow(Palette * palette, unsigned color) { int i, min = 0x7fffffff; int minc = -1; for (i = 0; i < 128; i++) { int c1 = palette->colors[i]; int diff = chroma_diff(c1, color); if (diff < min) { min = diff; minc = i; } } return minc; } static inline unsigned pixel_bgr(const uint8_t * src) { return (src[0]) | (src[1] << 8) | (src[2] << 16); } static int write_pixel_15_7(Palette * palette, uint8_t * dest, const uint8_t * src, int dist) { unsigned c15 = pixel_color15(src); unsigned color = pixel_bgr(src); int d15 = chroma_diff(color, color & 0x00f8f8f8); int c7 = pixel_color7_fast(palette, c15); int d7 = chroma_diff(color, palette->colors[c7]); if (dist + d15 >= d7) { dest[0] = c7; return 1; } else { dest[0] = 0x80 | (c15 >> 8); dest[1] = c15 & 0xff; return 2; } } static int update_palette_index(Palette * palette) { int r, g, b; unsigned int bgr, c15, index; for (r = 4; r < 256; r += 8) { for (g = 4; g < 256; g += 8) { for (b = 4; b < 256; b += 8) { bgr = b | (g << 8) | (r << 16); c15 = (b >> 3) | ((g & 0xf8) << 2) | ((r & 0xf8) << 7); index = pixel_color7_slow(palette, bgr); palette->index[c15] = index; } } } return 0; } static const unsigned int default_screen_video_v2_palette[128] = { 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF, 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300, 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066, 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900, 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC, 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF, 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF, 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF, 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC, 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC, 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699, 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999, 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966, 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666, 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933, 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333, 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300, 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633, 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966, 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99, 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB, 0x00DDDDDD, 0x00EEEEEE }; static int generate_default_palette(Palette * palette) { memcpy(palette->colors, default_screen_video_v2_palette, sizeof(default_screen_video_v2_palette)); return update_palette_index(palette); } static int generate_optimum_palette(Palette * palette, const uint8_t * image, int width, int height, int stride) { //this isn't implemented yet! Default palette only! return -1; } static inline int encode_15_7_sl(Palette * palette, uint8_t * dest, const uint8_t * src, int width, int dist) { int len = 0, x; for (x = 0; x < width; x++) { len += write_pixel_15_7(palette, dest + len, src + 3 * x, dist); } return len; } static int encode_15_7(Palette * palette, Block * b, const uint8_t * src, int stride, int dist) { int i; uint8_t *ptr = b->enc; for (i = 0; i < b->start; i++) ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist); b->sl_begin = ptr; for (; i < b->start + b->len; i++) ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist); b->sl_end = ptr; for (; i < b->height; i++) ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist); b->enc_size = ptr - b->enc; return b->enc_size; } static int encode_block(FlashSV2Context *s, Palette * palette, Block * b, Block * prev, const uint8_t * src, int stride, int comp, int dist, int keyframe) { unsigned buf_size = b->width * b->height * 6; uint8_t *buf = s->blockbuffer; int res; if (b->flags & COLORSPACE_15_7) { encode_15_7(palette, b, src, stride, dist); } else { encode_bgr(b, src, stride); } if (b->len > 0) { b->data_size = buf_size; res = encode_zlib(b, b->data, &b->data_size, comp); if (res) return res; if (!keyframe) { res = encode_zlibprime(b, prev, buf, &buf_size, comp); if (res) return res; if (buf_size < b->data_size) { b->data_size = buf_size; memcpy(b->data, buf, buf_size); b->flags |= ZLIB_PRIME_COMPRESS_PREVIOUS; } } } else { b->data_size = 0; } return 0; } static int compare_sl(FlashSV2Context * s, Block * b, const uint8_t * src, uint8_t * frame, uint8_t * key, int y, int keyframe) { if (memcmp(src, frame, b->width * 3) != 0) { b->dirty = 1; memcpy(frame, src, b->width * 3); #ifndef FLASHSV2_DUMB s->diff_lines++; #endif } if (memcmp(src, key, b->width * 3) != 0) { if (b->len == 0) b->start = y; b->len = y + 1 - b->start; } return 0; } static int mark_all_blocks(FlashSV2Context * s, const uint8_t * src, int stride, int keyframe) { int sl, rsl, col, pos, possl; Block *b; for (sl = s->image_height - 1; sl >= 0; sl--) { for (col = 0; col < s->cols; col++) { rsl = s->image_height - sl - 1; b = s->frame_blocks + col + rsl / s->block_height * s->cols; possl = stride * sl + col * s->block_width * 3; pos = s->image_width * rsl * 3 + col * s->block_width * 3; compare_sl(s, b, src + possl, s->current_frame + pos, s->key_frame + pos, rsl % s->block_height, keyframe); } } #ifndef FLASHSV2_DUMB s->tot_lines += s->image_height * s->cols; #endif return 0; } static int encode_all_blocks(FlashSV2Context * s, int keyframe) { int row, col, res; uint8_t *data; Block *b, *prev; for (row = 0; row < s->rows; row++) { for (col = 0; col < s->cols; col++) { b = s->frame_blocks + (row * s->cols + col); prev = s->key_blocks + (row * s->cols + col); b->flags = s->use15_7 ? COLORSPACE_15_7 : 0; if (keyframe) { b->start = 0; b->len = b->height; } else if (!b->dirty) { b->start = 0; b->len = 0; b->data_size = 0; continue; } else if (b->start != 0 || b->len != b->height) { b->flags |= HAS_DIFF_BLOCKS; } data = s->current_frame + s->image_width * 3 * s->block_height * row + s->block_width * col * 3; res = encode_block(s, &s->palette, b, prev, data, s->image_width * 3, s->comp, s->dist, keyframe); #ifndef FLASHSV2_DUMB if (b->dirty) s->diff_blocks++; s->comp_size += b->data_size; s->uncomp_size += b->enc_size; #endif if (res) return res; } } #ifndef FLASHSV2_DUMB s->raw_size += s->image_width * s->image_height * 3; s->tot_blocks += s->rows * s->cols; #endif return 0; } static int write_all_blocks(FlashSV2Context * s, uint8_t * buf, int buf_size) { int row, col, buf_pos = 0, len; Block *b; for (row = 0; row < s->rows; row++) { for (col = 0; col < s->cols; col++) { b = s->frame_blocks + row * s->cols + col; len = write_block(b, buf + buf_pos, buf_size - buf_pos); b->start = b->len = b->dirty = 0; if (len < 0) return len; buf_pos += len; } } return buf_pos; } static int write_bitstream(FlashSV2Context * s, const uint8_t * src, int stride, uint8_t * buf, int buf_size, int keyframe) { int buf_pos, res; res = mark_all_blocks(s, src, stride, keyframe); if (res) return res; res = encode_all_blocks(s, keyframe); if (res) return res; res = write_header(s, buf, buf_size); if (res < 0) { return res; } else { buf_pos = res; } res = write_all_blocks(s, buf + buf_pos, buf_size - buf_pos); if (res < 0) return res; buf_pos += res; #ifndef FLASHSV2_DUMB s->total_bits += ((double) buf_pos) * 8.0; #endif return buf_pos; } static void recommend_keyframe(FlashSV2Context * s, int *keyframe) { #ifndef FLASHSV2_DUMB double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio; if (s->avctx->gop_size > 0) { block_ratio = s->diff_blocks / s->tot_blocks; line_ratio = s->diff_lines / s->tot_lines; enc_ratio = s->uncomp_size / s->raw_size; comp_ratio = s->comp_size / s->uncomp_size; data_ratio = s->comp_size / s->raw_size; if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) { *keyframe = 1; return; } } #else return; #endif } #ifndef FLASHSV2_DUMB static const double block_size_fraction = 1.0 / 300; static const double use15_7_threshold = 8192; static const double color15_7_factor = 100; #endif static int optimum_block_width(FlashSV2Context * s) { #ifndef FLASHSV2_DUMB double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks; double width = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_width; int pwidth = ((int) width); return FFCLIP(pwidth & ~15, 256, 16); #else return 64; #endif } static int optimum_block_height(FlashSV2Context * s) { #ifndef FLASHSV2_DUMB double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks; double height = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_height; int pheight = ((int) height); return FFCLIP(pheight & ~15, 256, 16); #else return 64; #endif } static int optimum_use15_7(FlashSV2Context * s) { #ifndef FLASHSV2_DUMB double ideal = ((double)(s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame)) / ((double) s->avctx->time_base.num) * s->avctx->frame_number; if (ideal + use15_7_threshold < s->total_bits) { return 1; } else { return 0; } #else return s->avctx->global_quality == 0; #endif } static int optimum_dist(FlashSV2Context * s) { #ifndef FLASHSV2_DUMB double ideal = s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame; int dist = pow((s->total_bits / ideal) * color15_7_factor, 3); av_log(s->avctx, AV_LOG_DEBUG, "dist: %d\n", dist); return dist; #else return 15; #endif } static int reconfigure_at_keyframe(FlashSV2Context * s, const uint8_t * image, int stride) { int update_palette = 0; int res; int block_width = optimum_block_width (s); int block_height = optimum_block_height(s); s->rows = (s->image_height + block_height - 1) / block_height; s->cols = (s->image_width + block_width - 1) / block_width; if (block_width != s->block_width || block_height != s->block_height) { s->block_width = block_width; s->block_height = block_height; if (s->rows * s->cols > s->blocks_size / sizeof(Block)) { s->frame_blocks = av_realloc_array(s->frame_blocks, s->rows, s->cols * sizeof(Block)); s->key_blocks = av_realloc_array(s->key_blocks, s->cols, s->rows * sizeof(Block)); if (!s->frame_blocks || !s->key_blocks) { av_log(s->avctx, AV_LOG_ERROR, "Memory allocation failed.\n"); return -1; } s->blocks_size = s->rows * s->cols * sizeof(Block); } init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer); init_blocks(s, s->key_blocks, s->keybuffer, 0); av_fast_malloc(&s->blockbuffer, &s->blockbuffer_size, block_width * block_height * 6); if (!s->blockbuffer) { av_log(s->avctx, AV_LOG_ERROR, "Could not allocate block buffer.\n"); return AVERROR(ENOMEM); } } s->use15_7 = optimum_use15_7(s); if (s->use15_7) { if ((s->use_custom_palette && s->palette_type != 1) || update_palette) { res = generate_optimum_palette(&s->palette, image, s->image_width, s->image_height, stride); if (res) return res; s->palette_type = 1; av_log(s->avctx, AV_LOG_DEBUG, "Generated optimum palette\n"); } else if (!s->use_custom_palette && s->palette_type != 0) { res = generate_default_palette(&s->palette); if (res) return res; s->palette_type = 0; av_log(s->avctx, AV_LOG_DEBUG, "Generated default palette\n"); } } reset_stats(s); return 0; } static int flashsv2_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *p, int *got_packet) { FlashSV2Context *const s = avctx->priv_data; int res; int keyframe = 0; if ((res = ff_alloc_packet2(avctx, pkt, s->frame_size + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0) return res; /* First frame needs to be a keyframe */ if (avctx->frame_number == 0) keyframe = 1; /* Check the placement of keyframes */ if (avctx->gop_size > 0) { if (avctx->frame_number >= s->last_key_frame + avctx->gop_size) keyframe = 1; } if (!keyframe && avctx->frame_number > s->last_key_frame + avctx->keyint_min) { recommend_keyframe(s, &keyframe); if (keyframe) av_log(avctx, AV_LOG_DEBUG, "Recommending key frame at frame %d\n", avctx->frame_number); } if (keyframe) { res = reconfigure_at_keyframe(s, p->data[0], p->linesize[0]); if (res) return res; } if (s->use15_7) s->dist = optimum_dist(s); res = write_bitstream(s, p->data[0], p->linesize[0], pkt->data, pkt->size, keyframe); if (keyframe) { new_key_frame(s); s->last_key_frame = avctx->frame_number; pkt->flags |= AV_PKT_FLAG_KEY; av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n", avctx->frame_number); } pkt->size = res; *got_packet = 1; return 0; } static av_cold int flashsv2_encode_end(AVCodecContext * avctx) { FlashSV2Context *s = avctx->priv_data; cleanup(s); return 0; } AVCodec ff_flashsv2_encoder = { .name = "flashsv2", .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video Version 2"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FLASHSV2, .priv_data_size = sizeof(FlashSV2Context), .init = flashsv2_encode_init, .encode2 = flashsv2_encode_frame, .close = flashsv2_encode_end, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }, };