Commit f61272f0 authored by Luca Barbato's avatar Luca Barbato Committed by Diego Biurrun

ratecontrol: K&R cosmetic formatting

Signed-off-by: 's avatarDiego Biurrun <diego@biurrun.de>
parent f6804c3e
...@@ -40,34 +40,51 @@ ...@@ -40,34 +40,51 @@
#endif #endif
static int init_pass2(MpegEncContext *s); static int init_pass2(MpegEncContext *s);
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num); static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
double rate_factor, int frame_num);
void ff_write_pass1_stats(MpegEncContext *s){ void ff_write_pass1_stats(MpegEncContext *s)
snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n", {
s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type, snprintf(s->avctx->stats_out, 256,
s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits); "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
s->current_picture_ptr->f.display_picture_number,
s->current_picture_ptr->f.coded_picture_number,
s->pict_type,
s->current_picture.f.quality,
s->i_tex_bits,
s->p_tex_bits,
s->mv_bits,
s->misc_bits,
s->f_code,
s->b_code,
s->current_picture.mc_mb_var_sum,
s->current_picture.mb_var_sum,
s->i_count, s->skip_count,
s->header_bits);
} }
static inline double qp2bits(RateControlEntry *rce, double qp){ static inline double qp2bits(RateControlEntry *rce, double qp)
if(qp<=0.0){ {
if (qp <= 0.0) {
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
} }
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp; return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
} }
static inline double bits2qp(RateControlEntry *rce, double bits){ static inline double bits2qp(RateControlEntry *rce, double bits)
if(bits<0.9){ {
if (bits < 0.9) {
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
} }
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits; return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
} }
int ff_rate_control_init(MpegEncContext *s) int ff_rate_control_init(MpegEncContext *s)
{ {
RateControlContext *rcc= &s->rc_context; RateControlContext *rcc = &s->rc_context;
int i, res; int i, res;
static const char * const const_names[]={ static const char * const const_names[] = {
"PI", "PI",
"E", "E",
"iTex", "iTex",
...@@ -83,10 +100,12 @@ int ff_rate_control_init(MpegEncContext *s) ...@@ -83,10 +100,12 @@ int ff_rate_control_init(MpegEncContext *s)
"isB", "isB",
"avgQP", "avgQP",
"qComp", "qComp",
/* "lastIQP", #if 0
"lastIQP",
"lastPQP", "lastPQP",
"lastBQP", "lastBQP",
"nextNonBQP",*/ "nextNonBQP",
#endif
"avgIITex", "avgIITex",
"avgPITex", "avgPITex",
"avgPPTex", "avgPPTex",
...@@ -94,156 +113,172 @@ int ff_rate_control_init(MpegEncContext *s) ...@@ -94,156 +113,172 @@ int ff_rate_control_init(MpegEncContext *s)
"avgTex", "avgTex",
NULL NULL
}; };
static double (* const func1[])(void *, double)={ static double (* const func1[])(void *, double) = {
(void *)bits2qp, (void *)bits2qp,
(void *)qp2bits, (void *)qp2bits,
NULL NULL
}; };
static const char * const func1_names[]={ static const char * const func1_names[] = {
"bits2qp", "bits2qp",
"qp2bits", "qp2bits",
NULL NULL
}; };
emms_c(); emms_c();
res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx); res = av_expr_parse(&rcc->rc_eq_eval,
s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
const_names, func1_names, func1,
NULL, NULL, 0, s->avctx);
if (res < 0) { if (res < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq); av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
return res; return res;
} }
for(i=0; i<5; i++){ for (i = 0; i < 5; i++) {
rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0; rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
rcc->pred[i].count= 1.0; rcc->pred[i].count = 1.0;
rcc->pred[i].decay = 0.4;
rcc->pred[i].decay= 0.4;
rcc->i_cplx_sum [i]= rcc->i_cplx_sum [i] =
rcc->p_cplx_sum [i]= rcc->p_cplx_sum [i] =
rcc->mv_bits_sum[i]= rcc->mv_bits_sum[i] =
rcc->qscale_sum [i]= rcc->qscale_sum [i] =
rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
} }
rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy; rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
if(s->flags&CODEC_FLAG_PASS2){ if (s->flags & CODEC_FLAG_PASS2) {
int i; int i;
char *p; char *p;
/* find number of pics */ /* find number of pics */
p= s->avctx->stats_in; p = s->avctx->stats_in;
for(i=-1; p; i++){ for (i = -1; p; i++)
p= strchr(p+1, ';'); p = strchr(p + 1, ';');
} i += s->max_b_frames;
i+= s->max_b_frames; if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
return -1; return -1;
rcc->entry = av_mallocz(i*sizeof(RateControlEntry)); rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
rcc->num_entries= i; rcc->num_entries = i;
/* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */ /* init all to skipped p frames
for(i=0; i<rcc->num_entries; i++){ * (with b frames we might have a not encoded frame at the end FIXME) */
RateControlEntry *rce= &rcc->entry[i]; for (i = 0; i < rcc->num_entries; i++) {
rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P; RateControlEntry *rce = &rcc->entry[i];
rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
rce->misc_bits= s->mb_num + 10; rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
rce->mb_var_sum= s->mb_num*100; rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
rce->misc_bits = s->mb_num + 10;
rce->mb_var_sum = s->mb_num * 100;
} }
/* read stats */ /* read stats */
p= s->avctx->stats_in; p = s->avctx->stats_in;
for(i=0; i<rcc->num_entries - s->max_b_frames; i++){ for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
RateControlEntry *rce; RateControlEntry *rce;
int picture_number; int picture_number;
int e; int e;
char *next; char *next;
next= strchr(p, ';'); next = strchr(p, ';');
if(next){ if (next) {
(*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
next++; next++;
} }
e= sscanf(p, " in:%d ", &picture_number); e = sscanf(p, " in:%d ", &picture_number);
assert(picture_number >= 0); assert(picture_number >= 0);
assert(picture_number < rcc->num_entries); assert(picture_number < rcc->num_entries);
rce= &rcc->entry[picture_number]; rce = &rcc->entry[picture_number];
e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d", e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
&rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits, &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
&rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits); &rce->mv_bits, &rce->misc_bits,
if(e!=14){ &rce->f_code, &rce->b_code,
av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); &rce->mc_mb_var_sum, &rce->mb_var_sum,
&rce->i_count, &rce->skip_count, &rce->header_bits);
if (e != 14) {
av_log(s->avctx, AV_LOG_ERROR,
"statistics are damaged at line %d, parser out=%d\n",
i, e);
return -1; return -1;
} }
p= next; p = next;
} }
if(init_pass2(s) < 0) return -1; if (init_pass2(s) < 0)
return -1;
//FIXME maybe move to end // FIXME maybe move to end
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) { if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
#if CONFIG_LIBXVID #if CONFIG_LIBXVID
return ff_xvid_rate_control_init(s); return ff_xvid_rate_control_init(s);
#else #else
av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n"); av_log(s->avctx, AV_LOG_ERROR,
"Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
return -1; return -1;
#endif #endif
} }
} }
if(!(s->flags&CODEC_FLAG_PASS2)){ if (!(s->flags & CODEC_FLAG_PASS2)) {
rcc->short_term_qsum = 0.001;
rcc->short_term_qcount = 0.001;
rcc->short_term_qsum=0.001; rcc->pass1_rc_eq_output_sum = 0.001;
rcc->short_term_qcount=0.001; rcc->pass1_wanted_bits = 0.001;
rcc->pass1_rc_eq_output_sum= 0.001; if (s->avctx->qblur > 1.0) {
rcc->pass1_wanted_bits=0.001;
if(s->avctx->qblur > 1.0){
av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n"); av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
return -1; return -1;
} }
/* init stuff with the user specified complexity */ /* init stuff with the user specified complexity */
if(s->avctx->rc_initial_cplx){ if (s->avctx->rc_initial_cplx) {
for(i=0; i<60*30; i++){ for (i = 0; i < 60 * 30; i++) {
double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num; double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
RateControlEntry rce; RateControlEntry rce;
if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I; if (i % ((s->gop_size + 3) / 4) == 0)
else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B; rce.pict_type = AV_PICTURE_TYPE_I;
else rce.pict_type= AV_PICTURE_TYPE_P; else if (i % (s->max_b_frames + 1))
rce.pict_type = AV_PICTURE_TYPE_B;
rce.new_pict_type= rce.pict_type; else
rce.mc_mb_var_sum= bits*s->mb_num/100000; rce.pict_type = AV_PICTURE_TYPE_P;
rce.mb_var_sum = s->mb_num;
rce.qscale = FF_QP2LAMBDA * 2; rce.new_pict_type = rce.pict_type;
rce.f_code = 2; rce.mc_mb_var_sum = bits * s->mb_num / 100000;
rce.b_code = 1; rce.mb_var_sum = s->mb_num;
rce.misc_bits= 1;
rce.qscale = FF_QP2LAMBDA * 2;
if(s->pict_type== AV_PICTURE_TYPE_I){ rce.f_code = 2;
rce.i_count = s->mb_num; rce.b_code = 1;
rce.i_tex_bits= bits; rce.misc_bits = 1;
rce.p_tex_bits= 0;
rce.mv_bits= 0; if (s->pict_type == AV_PICTURE_TYPE_I) {
}else{ rce.i_count = s->mb_num;
rce.i_count = 0; //FIXME we do know this approx rce.i_tex_bits = bits;
rce.i_tex_bits= 0; rce.p_tex_bits = 0;
rce.p_tex_bits= bits*0.9; rce.mv_bits = 0;
rce.mv_bits= bits*0.1; } else {
rce.i_count = 0; // FIXME we do know this approx
rce.i_tex_bits = 0;
rce.p_tex_bits = bits * 0.9;
rce.mv_bits = bits * 0.1;
} }
rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale; rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale; rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits; rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
rcc->frame_count[rce.pict_type] ++; rcc->frame_count[rce.pict_type]++;
get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i); // FIXME misbehaves a little for variable fps
rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
} }
} }
} }
return 0; return 0;
...@@ -251,47 +286,49 @@ int ff_rate_control_init(MpegEncContext *s) ...@@ -251,47 +286,49 @@ int ff_rate_control_init(MpegEncContext *s)
void ff_rate_control_uninit(MpegEncContext *s) void ff_rate_control_uninit(MpegEncContext *s)
{ {
RateControlContext *rcc= &s->rc_context; RateControlContext *rcc = &s->rc_context;
emms_c(); emms_c();
av_expr_free(rcc->rc_eq_eval); av_expr_free(rcc->rc_eq_eval);
av_freep(&rcc->entry); av_freep(&rcc->entry);
#if CONFIG_LIBXVID #if CONFIG_LIBXVID
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
ff_xvid_rate_control_uninit(s); ff_xvid_rate_control_uninit(s);
#endif #endif
} }
int ff_vbv_update(MpegEncContext *s, int frame_size){ int ff_vbv_update(MpegEncContext *s, int frame_size)
RateControlContext *rcc= &s->rc_context; {
const double fps= 1/av_q2d(s->avctx->time_base); RateControlContext *rcc = &s->rc_context;
const int buffer_size= s->avctx->rc_buffer_size; const double fps = 1 / av_q2d(s->avctx->time_base);
const double min_rate= s->avctx->rc_min_rate/fps; const int buffer_size = s->avctx->rc_buffer_size;
const double max_rate= s->avctx->rc_max_rate/fps; const double min_rate = s->avctx->rc_min_rate / fps;
const double max_rate = s->avctx->rc_max_rate / fps;
av_dlog(s, "%d %f %d %f %f\n", av_dlog(s, "%d %f %d %f %f\n",
buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
if(buffer_size){
if (buffer_size) {
int left; int left;
rcc->buffer_index-= frame_size; rcc->buffer_index -= frame_size;
if(rcc->buffer_index < 0){ if (rcc->buffer_index < 0) {
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
rcc->buffer_index= 0; rcc->buffer_index = 0;
} }
left= buffer_size - rcc->buffer_index - 1; left = buffer_size - rcc->buffer_index - 1;
rcc->buffer_index += av_clip(left, min_rate, max_rate); rcc->buffer_index += av_clip(left, min_rate, max_rate);
if(rcc->buffer_index > buffer_size){ if (rcc->buffer_index > buffer_size) {
int stuffing= ceil((rcc->buffer_index - buffer_size)/8); int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
stuffing=4; stuffing = 4;
rcc->buffer_index -= 8*stuffing; rcc->buffer_index -= 8 * stuffing;
if(s->avctx->debug & FF_DEBUG_RC) if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
return stuffing; return stuffing;
...@@ -303,34 +340,38 @@ int ff_vbv_update(MpegEncContext *s, int frame_size){ ...@@ -303,34 +340,38 @@ int ff_vbv_update(MpegEncContext *s, int frame_size){
/** /**
* Modify the bitrate curve from pass1 for one frame. * Modify the bitrate curve from pass1 for one frame.
*/ */
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){ static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
RateControlContext *rcc= &s->rc_context; double rate_factor, int frame_num)
AVCodecContext *a= s->avctx; {
RateControlContext *rcc = &s->rc_context;
AVCodecContext *a = s->avctx;
const int pict_type = rce->new_pict_type;
const double mb_num = s->mb_num;
double q, bits; double q, bits;
const int pict_type= rce->new_pict_type;
const double mb_num= s->mb_num;
int i; int i;
double const_values[]={ double const_values[] = {
M_PI, M_PI,
M_E, M_E,
rce->i_tex_bits*rce->qscale, rce->i_tex_bits * rce->qscale,
rce->p_tex_bits*rce->qscale, rce->p_tex_bits * rce->qscale,
(rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale, (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
rce->mv_bits/mb_num, rce->mv_bits / mb_num,
rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code, rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
rce->i_count/mb_num, rce->i_count / mb_num,
rce->mc_mb_var_sum/mb_num, rce->mc_mb_var_sum / mb_num,
rce->mb_var_sum/mb_num, rce->mb_var_sum / mb_num,
rce->pict_type == AV_PICTURE_TYPE_I, rce->pict_type == AV_PICTURE_TYPE_I,
rce->pict_type == AV_PICTURE_TYPE_P, rce->pict_type == AV_PICTURE_TYPE_P,
rce->pict_type == AV_PICTURE_TYPE_B, rce->pict_type == AV_PICTURE_TYPE_B,
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
a->qcompress, a->qcompress,
/* rcc->last_qscale_for[AV_PICTURE_TYPE_I], #if 0
rcc->last_qscale_for[AV_PICTURE_TYPE_I],
rcc->last_qscale_for[AV_PICTURE_TYPE_P], rcc->last_qscale_for[AV_PICTURE_TYPE_P],
rcc->last_qscale_for[AV_PICTURE_TYPE_B], rcc->last_qscale_for[AV_PICTURE_TYPE_B],
rcc->next_non_b_qscale,*/ rcc->next_non_b_qscale,
#endif
rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
...@@ -345,61 +386,71 @@ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_f ...@@ -345,61 +386,71 @@ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_f
return -1; return -1;
} }
rcc->pass1_rc_eq_output_sum+= bits; rcc->pass1_rc_eq_output_sum += bits;
bits*=rate_factor; bits *= rate_factor;
if(bits<0.0) bits=0.0; if (bits < 0.0)
bits+= 1.0; //avoid 1/0 issues bits = 0.0;
bits += 1.0; // avoid 1/0 issues
/* user override */ /* user override */
for(i=0; i<s->avctx->rc_override_count; i++){ for (i = 0; i < s->avctx->rc_override_count; i++) {
RcOverride *rco= s->avctx->rc_override; RcOverride *rco = s->avctx->rc_override;
if(rco[i].start_frame > frame_num) continue; if (rco[i].start_frame > frame_num)
if(rco[i].end_frame < frame_num) continue; continue;
if (rco[i].end_frame < frame_num)
if(rco[i].qscale) continue;
bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
if (rco[i].qscale)
bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
else else
bits*= rco[i].quality_factor; bits *= rco[i].quality_factor;
} }
q= bits2qp(rce, bits); q = bits2qp(rce, bits);
/* I/B difference */ /* I/B difference */
if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0) if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset; q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0) else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset; q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
if(q<1) q=1; if (q < 1)
q = 1;
return q; return q;
} }
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){ static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
RateControlContext *rcc= &s->rc_context; {
AVCodecContext *a= s->avctx; RateControlContext *rcc = &s->rc_context;
const int pict_type= rce->new_pict_type; AVCodecContext *a = s->avctx;
const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; const int pict_type = rce->new_pict_type;
const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type]; const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset; if (pict_type == AV_PICTURE_TYPE_I &&
else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0) (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
q= last_non_b_q* a->b_quant_factor + a->b_quant_offset; q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
if(q<1) q=1; else if (pict_type == AV_PICTURE_TYPE_B &&
a->b_quant_factor > 0.0)
q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
if (q < 1)
q = 1;
/* last qscale / qdiff stuff */ /* last qscale / qdiff stuff */
if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){ if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
double last_q= rcc->last_qscale_for[pict_type]; double last_q = rcc->last_qscale_for[pict_type];
const int maxdiff= FF_QP2LAMBDA * a->max_qdiff; const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
if (q > last_q + maxdiff) q= last_q + maxdiff; if (q > last_q + maxdiff)
else if(q < last_q - maxdiff) q= last_q - maxdiff; q = last_q + maxdiff;
else if (q < last_q - maxdiff)
q = last_q - maxdiff;
} }
rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
if(pict_type!=AV_PICTURE_TYPE_B) if (pict_type != AV_PICTURE_TYPE_B)
rcc->last_non_b_pict_type= pict_type; rcc->last_non_b_pict_type = pict_type;
return q; return q;
} }
...@@ -407,239 +458,269 @@ static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, doubl ...@@ -407,239 +458,269 @@ static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, doubl
/** /**
* Get the qmin & qmax for pict_type. * Get the qmin & qmax for pict_type.
*/ */
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){ static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
int qmin= s->avctx->lmin; {
int qmax= s->avctx->lmax; int qmin = s->avctx->lmin;
int qmax = s->avctx->lmax;
assert(qmin <= qmax); assert(qmin <= qmax);
if(pict_type==AV_PICTURE_TYPE_B){ switch (pict_type) {
qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); case AV_PICTURE_TYPE_B:
qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
}else if(pict_type==AV_PICTURE_TYPE_I){ qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); break;
qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); case AV_PICTURE_TYPE_I:
qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
break;
} }
qmin= av_clip(qmin, 1, FF_LAMBDA_MAX); qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
qmax= av_clip(qmax, 1, FF_LAMBDA_MAX); qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
if(qmax<qmin) qmax= qmin; if (qmax < qmin)
qmax = qmin;
*qmin_ret= qmin; *qmin_ret = qmin;
*qmax_ret= qmax; *qmax_ret = qmax;
} }
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){ static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
RateControlContext *rcc= &s->rc_context; double q, int frame_num)
{
RateControlContext *rcc = &s->rc_context;
const double buffer_size = s->avctx->rc_buffer_size;
const double fps = 1 / av_q2d(s->avctx->time_base);
const double min_rate = s->avctx->rc_min_rate / fps;
const double max_rate = s->avctx->rc_max_rate / fps;
const int pict_type = rce->new_pict_type;
int qmin, qmax; int qmin, qmax;
const int pict_type= rce->new_pict_type;
const double buffer_size= s->avctx->rc_buffer_size;
const double fps= 1/av_q2d(s->avctx->time_base);
const double min_rate= s->avctx->rc_min_rate / fps;
const double max_rate= s->avctx->rc_max_rate / fps;
get_qminmax(&qmin, &qmax, s, pict_type); get_qminmax(&qmin, &qmax, s, pict_type);
/* modulation */ /* modulation */
if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P) if (s->avctx->rc_qmod_freq &&
q*= s->avctx->rc_qmod_amp; frame_num % s->avctx->rc_qmod_freq == 0 &&
pict_type == AV_PICTURE_TYPE_P)
q *= s->avctx->rc_qmod_amp;
/* buffer overflow/underflow protection */ /* buffer overflow/underflow protection */
if(buffer_size){ if (buffer_size) {
double expected_size= rcc->buffer_index; double expected_size = rcc->buffer_index;
double q_limit; double q_limit;
if(min_rate){ if (min_rate) {
double d= 2*(buffer_size - expected_size)/buffer_size; double d = 2 * (buffer_size - expected_size) / buffer_size;
if(d>1.0) d=1.0; if (d > 1.0)
else if(d<0.0001) d=0.0001; d = 1.0;
q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); else if (d < 0.0001)
d = 0.0001;
q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1)); q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
if(q > q_limit){
if(s->avctx->debug&FF_DEBUG_RC){ q_limit = bits2qp(rce,
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); FFMAX((min_rate - buffer_size + rcc->buffer_index) *
} s->avctx->rc_min_vbv_overflow_use, 1));
q= q_limit;
if (q > q_limit) {
if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG,
"limiting QP %f -> %f\n", q, q_limit);
q = q_limit;
} }
} }
if(max_rate){ if (max_rate) {
double d= 2*expected_size/buffer_size; double d = 2 * expected_size / buffer_size;
if(d>1.0) d=1.0; if (d > 1.0)
else if(d<0.0001) d=0.0001; d = 1.0;
q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); else if (d < 0.0001)
d = 0.0001;
q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1)); q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
if(q < q_limit){
if(s->avctx->debug&FF_DEBUG_RC){ q_limit = bits2qp(rce,
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); FFMAX(rcc->buffer_index *
} s->avctx->rc_max_available_vbv_use,
q= q_limit; 1));
if (q < q_limit) {
if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG,
"limiting QP %f -> %f\n", q, q_limit);
q = q_limit;
} }
} }
} }
av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
q, max_rate, min_rate, buffer_size, rcc->buffer_index, q, max_rate, min_rate, buffer_size, rcc->buffer_index,
s->avctx->rc_buffer_aggressivity); s->avctx->rc_buffer_aggressivity);
if(s->avctx->rc_qsquish==0.0 || qmin==qmax){ if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
if (q<qmin) q=qmin; if (q < qmin)
else if(q>qmax) q=qmax; q = qmin;
}else{ else if (q > qmax)
double min2= log(qmin); q = qmax;
double max2= log(qmax); } else {
double min2 = log(qmin);
q= log(q); double max2 = log(qmax);
q= (q - min2)/(max2-min2) - 0.5;
q*= -4.0; q = log(q);
q= 1.0/(1.0 + exp(q)); q = (q - min2) / (max2 - min2) - 0.5;
q= q*(max2-min2) + min2; q *= -4.0;
q = 1.0 / (1.0 + exp(q));
q= exp(q); q = q * (max2 - min2) + min2;
q = exp(q);
} }
return q; return q;
} }
//---------------------------------- // ----------------------------------
// 1 Pass Code // 1 Pass Code
static double predict_size(Predictor *p, double q, double var) static double predict_size(Predictor *p, double q, double var)
{ {
return p->coeff*var / (q*p->count); return p->coeff * var / (q * p->count);
} }
static void update_predictor(Predictor *p, double q, double var, double size) static void update_predictor(Predictor *p, double q, double var, double size)
{ {
double new_coeff= size*q / (var + 1); double new_coeff = size * q / (var + 1);
if(var<10) return; if (var < 10)
return;
p->count*= p->decay; p->count *= p->decay;
p->coeff*= p->decay; p->coeff *= p->decay;
p->count++; p->count++;
p->coeff+= new_coeff; p->coeff += new_coeff;
} }
static void adaptive_quantization(MpegEncContext *s, double q){ static void adaptive_quantization(MpegEncContext *s, double q)
{
int i; int i;
const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0); const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
const float dark_masking= s->avctx->dark_masking / (128.0*128.0); const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
const float temp_cplx_masking= s->avctx->temporal_cplx_masking; const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
const float spatial_cplx_masking = s->avctx->spatial_cplx_masking; const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
const float p_masking = s->avctx->p_masking; const float p_masking = s->avctx->p_masking;
const float border_masking = s->avctx->border_masking; const float border_masking = s->avctx->border_masking;
float bits_sum= 0.0; float bits_sum = 0.0;
float cplx_sum= 0.0; float cplx_sum = 0.0;
float *cplx_tab = s->cplx_tab; float *cplx_tab = s->cplx_tab;
float *bits_tab = s->bits_tab; float *bits_tab = s->bits_tab;
const int qmin= s->avctx->mb_lmin; const int qmin = s->avctx->mb_lmin;
const int qmax= s->avctx->mb_lmax; const int qmax = s->avctx->mb_lmax;
Picture * const pic= &s->current_picture; Picture *const pic = &s->current_picture;
const int mb_width = s->mb_width; const int mb_width = s->mb_width;
const int mb_height = s->mb_height; const int mb_height = s->mb_height;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow() float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
float spat_cplx= sqrt(pic->mb_var[mb_xy]); float spat_cplx = sqrt(pic->mb_var[mb_xy]);
const int lumi= pic->mb_mean[mb_xy]; const int lumi = pic->mb_mean[mb_xy];
float bits, cplx, factor; float bits, cplx, factor;
int mb_x = mb_xy % s->mb_stride; int mb_x = mb_xy % s->mb_stride;
int mb_y = mb_xy / s->mb_stride; int mb_y = mb_xy / s->mb_stride;
int mb_distance; int mb_distance;
float mb_factor = 0.0; float mb_factor = 0.0;
if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune if (spat_cplx < 4)
if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune spat_cplx = 4; // FIXME finetune
if (temp_cplx < 4)
if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode temp_cplx = 4; // FIXME finetune
cplx= spat_cplx;
factor= 1.0 + p_masking; if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
}else{ cplx = spat_cplx;
cplx= temp_cplx; factor = 1.0 + p_masking;
factor= pow(temp_cplx, - temp_cplx_masking); } else {
cplx = temp_cplx;
factor = pow(temp_cplx, -temp_cplx_masking);
} }
factor*=pow(spat_cplx, - spatial_cplx_masking); factor *= pow(spat_cplx, -spatial_cplx_masking);
if(lumi>127) if (lumi > 127)
factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking); factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
else else
factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking); factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
if(mb_x < mb_width/5){ if (mb_x < mb_width / 5) {
mb_distance = mb_width/5 - mb_x; mb_distance = mb_width / 5 - mb_x;
mb_factor = (float)mb_distance / (float)(mb_width/5); mb_factor = (float)mb_distance / (float)(mb_width / 5);
}else if(mb_x > 4*mb_width/5){ } else if (mb_x > 4 * mb_width / 5) {
mb_distance = mb_x - 4*mb_width/5; mb_distance = mb_x - 4 * mb_width / 5;
mb_factor = (float)mb_distance / (float)(mb_width/5); mb_factor = (float)mb_distance / (float)(mb_width / 5);
} }
if(mb_y < mb_height/5){ if (mb_y < mb_height / 5) {
mb_distance = mb_height/5 - mb_y; mb_distance = mb_height / 5 - mb_y;
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); mb_factor = FFMAX(mb_factor,
}else if(mb_y > 4*mb_height/5){ (float)mb_distance / (float)(mb_height / 5));
mb_distance = mb_y - 4*mb_height/5; } else if (mb_y > 4 * mb_height / 5) {
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); mb_distance = mb_y - 4 * mb_height / 5;
mb_factor = FFMAX(mb_factor,
(float)mb_distance / (float)(mb_height / 5));
} }
factor*= 1.0 - border_masking*mb_factor; factor *= 1.0 - border_masking * mb_factor;
if(factor<0.00001) factor= 0.00001; if (factor < 0.00001)
factor = 0.00001;
bits= cplx*factor; bits = cplx * factor;
cplx_sum+= cplx; cplx_sum += cplx;
bits_sum+= bits; bits_sum += bits;
cplx_tab[i]= cplx; cplx_tab[i] = cplx;
bits_tab[i]= bits; bits_tab[i] = bits;
} }
/* handle qmin/qmax clipping */ /* handle qmin/qmax clipping */
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
float factor= bits_sum/cplx_sum; float factor = bits_sum / cplx_sum;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
float newq= q*cplx_tab[i]/bits_tab[i]; float newq = q * cplx_tab[i] / bits_tab[i];
newq*= factor; newq *= factor;
if (newq > qmax){ if (newq > qmax) {
bits_sum -= bits_tab[i]; bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i]*q/qmax; cplx_sum -= cplx_tab[i] * q / qmax;
} } else if (newq < qmin) {
else if(newq < qmin){
bits_sum -= bits_tab[i]; bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i]*q/qmin; cplx_sum -= cplx_tab[i] * q / qmin;
} }
} }
if(bits_sum < 0.001) bits_sum= 0.001; if (bits_sum < 0.001)
if(cplx_sum < 0.001) cplx_sum= 0.001; bits_sum = 0.001;
if (cplx_sum < 0.001)
cplx_sum = 0.001;
} }
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
float newq= q*cplx_tab[i]/bits_tab[i]; float newq = q * cplx_tab[i] / bits_tab[i];
int intq; int intq;
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
newq*= bits_sum/cplx_sum; newq *= bits_sum / cplx_sum;
} }
intq= (int)(newq + 0.5); intq = (int)(newq + 0.5);
if (intq > qmax) intq= qmax; if (intq > qmax)
else if(intq < qmin) intq= qmin; intq = qmax;
s->lambda_table[mb_xy]= intq; else if (intq < qmin)
intq = qmin;
s->lambda_table[mb_xy] = intq;
} }
} }
void ff_get_2pass_fcode(MpegEncContext *s){ void ff_get_2pass_fcode(MpegEncContext *s)
RateControlContext *rcc= &s->rc_context; {
int picture_number= s->picture_number; RateControlContext *rcc = &s->rc_context;
RateControlEntry *rce; RateControlEntry *rce = &rcc->entry[s->picture_number];
rce= &rcc->entry[picture_number]; s->f_code = rce->f_code;
s->f_code= rce->f_code; s->b_code = rce->b_code;
s->b_code= rce->b_code;
} }
//FIXME rd or at least approx for dquant // FIXME rd or at least approx for dquant
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
{ {
...@@ -649,249 +730,272 @@ float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) ...@@ -649,249 +730,272 @@ float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
double diff; double diff;
double short_term_q; double short_term_q;
double fps; double fps;
int picture_number= s->picture_number; int picture_number = s->picture_number;
int64_t wanted_bits; int64_t wanted_bits;
RateControlContext *rcc= &s->rc_context; RateControlContext *rcc = &s->rc_context;
AVCodecContext *a= s->avctx; AVCodecContext *a = s->avctx;
RateControlEntry local_rce, *rce; RateControlEntry local_rce, *rce;
double bits; double bits;
double rate_factor; double rate_factor;
int var; int var;
const int pict_type= s->pict_type; const int pict_type = s->pict_type;
Picture * const pic= &s->current_picture; Picture * const pic = &s->current_picture;
emms_c(); emms_c();
#if CONFIG_LIBXVID #if CONFIG_LIBXVID
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) if ((s->flags & CODEC_FLAG_PASS2) &&
s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
return ff_xvid_rate_estimate_qscale(s, dry_run); return ff_xvid_rate_estimate_qscale(s, dry_run);
#endif #endif
get_qminmax(&qmin, &qmax, s, pict_type); get_qminmax(&qmin, &qmax, s, pict_type);
fps= 1/av_q2d(s->avctx->time_base); fps = 1 / av_q2d(s->avctx->time_base);
/* update predictors */ /* update predictors */
if(picture_number>2 && !dry_run){ if (picture_number > 2 && !dry_run) {
const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum; const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits); : rcc->last_mc_mb_var_sum;
update_predictor(&rcc->pred[s->last_pict_type],
rcc->last_qscale,
sqrt(last_var), s->frame_bits);
} }
if(s->flags&CODEC_FLAG_PASS2){ if (s->flags & CODEC_FLAG_PASS2) {
assert(picture_number>=0); assert(picture_number >= 0);
assert(picture_number<rcc->num_entries); assert(picture_number < rcc->num_entries);
rce= &rcc->entry[picture_number]; rce = &rcc->entry[picture_number];
wanted_bits= rce->expected_bits; wanted_bits = rce->expected_bits;
}else{ } else {
Picture *dts_pic; Picture *dts_pic;
rce= &local_rce; rce = &local_rce;
//FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering /* FIXME add a dts field to AVFrame and ensure it is set and use it
//but the reordering is simpler for now until h.264 b pyramid must be handeld * here instead of reordering but the reordering is simpler for now
if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) * until H.264 B-pyramid must be handled. */
dts_pic= s->current_picture_ptr; if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
dts_pic = s->current_picture_ptr;
else else
dts_pic= s->last_picture_ptr; dts_pic = s->last_picture_ptr;
if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE) if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps); wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
else else
wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps); wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps);
} }
diff= s->total_bits - wanted_bits; diff = s->total_bits - wanted_bits;
br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance; br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
if(br_compensation<=0.0) br_compensation=0.001; if (br_compensation <= 0.0)
br_compensation = 0.001;
var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum; var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
short_term_q = 0; /* avoid warning */ short_term_q = 0; /* avoid warning */
if(s->flags&CODEC_FLAG_PASS2){ if (s->flags & CODEC_FLAG_PASS2) {
if(pict_type!=AV_PICTURE_TYPE_I) if (pict_type != AV_PICTURE_TYPE_I)
assert(pict_type == rce->new_pict_type); assert(pict_type == rce->new_pict_type);
q= rce->new_qscale / br_compensation; q = rce->new_qscale / br_compensation;
av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
br_compensation, s->frame_bits, var, pict_type); br_compensation, s->frame_bits, var, pict_type);
}else{ } else {
rce->pict_type= rce->pict_type =
rce->new_pict_type= pict_type; rce->new_pict_type = pict_type;
rce->mc_mb_var_sum= pic->mc_mb_var_sum; rce->mc_mb_var_sum = pic->mc_mb_var_sum;
rce->mb_var_sum = pic-> mb_var_sum; rce->mb_var_sum = pic->mb_var_sum;
rce->qscale = FF_QP2LAMBDA * 2; rce->qscale = FF_QP2LAMBDA * 2;
rce->f_code = s->f_code; rce->f_code = s->f_code;
rce->b_code = s->b_code; rce->b_code = s->b_code;
rce->misc_bits= 1; rce->misc_bits = 1;
bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var)); bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
if(pict_type== AV_PICTURE_TYPE_I){ if (pict_type == AV_PICTURE_TYPE_I) {
rce->i_count = s->mb_num; rce->i_count = s->mb_num;
rce->i_tex_bits= bits; rce->i_tex_bits = bits;
rce->p_tex_bits= 0; rce->p_tex_bits = 0;
rce->mv_bits= 0; rce->mv_bits = 0;
}else{ } else {
rce->i_count = 0; //FIXME we do know this approx rce->i_count = 0; // FIXME we do know this approx
rce->i_tex_bits= 0; rce->i_tex_bits = 0;
rce->p_tex_bits= bits*0.9; rce->p_tex_bits = bits * 0.9;
rce->mv_bits = bits * 0.1;
rce->mv_bits= bits*0.1;
} }
rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale; rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale; rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
rcc->mv_bits_sum[pict_type] += rce->mv_bits; rcc->mv_bits_sum[pict_type] += rce->mv_bits;
rcc->frame_count[pict_type] ++; rcc->frame_count[pict_type]++;
bits= rce->i_tex_bits + rce->p_tex_bits; bits = rce->i_tex_bits + rce->p_tex_bits;
rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation; rate_factor = rcc->pass1_wanted_bits /
rcc->pass1_rc_eq_output_sum * br_compensation;
q= get_qscale(s, rce, rate_factor, picture_number); q = get_qscale(s, rce, rate_factor, picture_number);
if (q < 0) if (q < 0)
return -1; return -1;
assert(q>0.0); assert(q > 0.0);
q= get_diff_limited_q(s, rce, q); q = get_diff_limited_q(s, rce, q);
assert(q>0.0); assert(q > 0.0);
if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass // FIXME type dependent blur like in 2-pass
rcc->short_term_qsum*=a->qblur; if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
rcc->short_term_qcount*=a->qblur; rcc->short_term_qsum *= a->qblur;
rcc->short_term_qcount *= a->qblur;
rcc->short_term_qsum+= q; rcc->short_term_qsum += q;
rcc->short_term_qcount++; rcc->short_term_qcount++;
q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount; q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
} }
assert(q>0.0); assert(q > 0.0);
q= modify_qscale(s, rce, q, picture_number); q = modify_qscale(s, rce, q, picture_number);
rcc->pass1_wanted_bits+= s->bit_rate/fps; rcc->pass1_wanted_bits += s->bit_rate / fps;
assert(q>0.0); assert(q > 0.0);
} }
if(s->avctx->debug&FF_DEBUG_RC){ if (s->avctx->debug & FF_DEBUG_RC) {
av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n", av_log(s->avctx, AV_LOG_DEBUG,
av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps "size:%d var:%d/%d br:%d fps:%d\n",
); av_get_picture_type_char(pict_type),
qmin, q, qmax, picture_number,
(int)wanted_bits / 1000, (int)s->total_bits / 1000,
br_compensation, short_term_q, s->frame_bits,
pic->mb_var_sum, pic->mc_mb_var_sum,
s->bit_rate / 1000, (int)fps);
} }
if (q<qmin) q=qmin; if (q < qmin)
else if(q>qmax) q=qmax; q = qmin;
else if (q > qmax)
q = qmax;
if(s->adaptive_quant) if (s->adaptive_quant)
adaptive_quantization(s, q); adaptive_quantization(s, q);
else else
q= (int)(q + 0.5); q = (int)(q + 0.5);
if(!dry_run){ if (!dry_run) {
rcc->last_qscale= q; rcc->last_qscale = q;
rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum; rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
rcc->last_mb_var_sum= pic->mb_var_sum; rcc->last_mb_var_sum = pic->mb_var_sum;
} }
return q; return q;
} }
//---------------------------------------------- // ----------------------------------------------
// 2-Pass code // 2-Pass code
static int init_pass2(MpegEncContext *s) static int init_pass2(MpegEncContext *s)
{ {
RateControlContext *rcc= &s->rc_context; RateControlContext *rcc = &s->rc_context;
AVCodecContext *a= s->avctx; AVCodecContext *a = s->avctx;
int i, toobig; int i, toobig;
double fps= 1/av_q2d(s->avctx->time_base); double fps = 1 / av_q2d(s->avctx->time_base);
double complexity[5]={0,0,0,0,0}; // approximate bits at quant=1 double complexity[5] = { 0 }; // approximate bits at quant=1
uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits uint64_t const_bits[5] = { 0 }; // quantizer independent bits
uint64_t all_const_bits; uint64_t all_const_bits;
uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); uint64_t all_available_bits = (uint64_t)(s->bit_rate *
double rate_factor=0; (double)rcc->num_entries / fps);
double rate_factor = 0;
double step; double step;
//int last_i_frame=-10000000; const int filter_size = (int)(a->qblur * 4) | 1;
const int filter_size= (int)(a->qblur*4) | 1;
double expected_bits; double expected_bits;
double *qscale, *blurred_qscale, qscale_sum; double *qscale, *blurred_qscale, qscale_sum;
/* find complexity & const_bits & decide the pict_types */ /* find complexity & const_bits & decide the pict_types */
for(i=0; i<rcc->num_entries; i++){ for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce= &rcc->entry[i]; RateControlEntry *rce = &rcc->entry[i];
rce->new_pict_type= rce->pict_type; rce->new_pict_type = rce->pict_type;
rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale; rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale; rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
rcc->frame_count[rce->pict_type] ++; rcc->frame_count[rce->pict_type]++;
complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; (double)rce->qscale;
const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
} }
all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
if(all_available_bits < all_const_bits){ all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
const_bits[AV_PICTURE_TYPE_P] +
const_bits[AV_PICTURE_TYPE_B];
if (all_available_bits < all_const_bits) {
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
return -1; return -1;
} }
qscale= av_malloc(sizeof(double)*rcc->num_entries); qscale = av_malloc(sizeof(double) * rcc->num_entries);
blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries); blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
toobig = 0; toobig = 0;
for(step=256*256; step>0.0000001; step*=0.5){ for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
expected_bits=0; expected_bits = 0;
rate_factor+= step; rate_factor += step;
rcc->buffer_index= s->avctx->rc_buffer_size/2; rcc->buffer_index = s->avctx->rc_buffer_size / 2;
/* find qscale */ /* find qscale */
for(i=0; i<rcc->num_entries; i++){ for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce= &rcc->entry[i]; RateControlEntry *rce = &rcc->entry[i];
qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
rcc->last_qscale_for[rce->pict_type] = qscale[i]; rcc->last_qscale_for[rce->pict_type] = qscale[i];
} }
assert(filter_size%2==1); assert(filter_size % 2 == 1);
/* fixed I/B QP relative to P mode */ /* fixed I/B QP relative to P mode */
for(i=rcc->num_entries-1; i>=0; i--){ for (i = rcc->num_entries - 1; i >= 0; i--) {
RateControlEntry *rce= &rcc->entry[i]; RateControlEntry *rce = &rcc->entry[i];
qscale[i]= get_diff_limited_q(s, rce, qscale[i]); qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
} }
/* smooth curve */ /* smooth curve */
for(i=0; i<rcc->num_entries; i++){ for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce= &rcc->entry[i]; RateControlEntry *rce = &rcc->entry[i];
const int pict_type= rce->new_pict_type; const int pict_type = rce->new_pict_type;
int j; int j;
double q=0.0, sum=0.0; double q = 0.0, sum = 0.0;
for(j=0; j<filter_size; j++){ for (j = 0; j < filter_size; j++) {
int index= i+j-filter_size/2; int index = i + j - filter_size / 2;
double d= index-i; double d = index - i;
double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur)); double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
if(index < 0 || index >= rcc->num_entries) continue; if (index < 0 || index >= rcc->num_entries)
if(pict_type != rcc->entry[index].new_pict_type) continue; continue;
q+= qscale[index] * coeff; if (pict_type != rcc->entry[index].new_pict_type)
sum+= coeff; continue;
q += qscale[index] * coeff;
sum += coeff;
} }
blurred_qscale[i]= q/sum; blurred_qscale[i] = q / sum;
} }
/* find expected bits */ /* find expected bits */
for(i=0; i<rcc->num_entries; i++){ for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce= &rcc->entry[i]; RateControlEntry *rce = &rcc->entry[i];
double bits; double bits;
rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
bits += 8*ff_vbv_update(s, bits);
rce->expected_bits= expected_bits; rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
expected_bits += bits;
bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
bits += 8 * ff_vbv_update(s, bits);
rce->expected_bits = expected_bits;
expected_bits += bits;
} }
av_dlog(s->avctx, av_dlog(s->avctx,
"expected_bits: %f all_available_bits: %d rate_factor: %f\n", "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
expected_bits, (int)all_available_bits, rate_factor); expected_bits, (int)all_available_bits, rate_factor);
if(expected_bits > all_available_bits) { if (expected_bits > all_available_bits) {
rate_factor-= step; rate_factor -= step;
++toobig; ++toobig;
} }
} }
...@@ -900,33 +1004,34 @@ static int init_pass2(MpegEncContext *s) ...@@ -900,33 +1004,34 @@ static int init_pass2(MpegEncContext *s)
/* check bitrate calculations and print info */ /* check bitrate calculations and print info */
qscale_sum = 0.0; qscale_sum = 0.0;
for(i=0; i<rcc->num_entries; i++){ for (i = 0; i < rcc->num_entries; i++) {
av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
i, i,
rcc->entry[i].new_qscale, rcc->entry[i].new_qscale,
rcc->entry[i].new_qscale / FF_QP2LAMBDA); rcc->entry[i].new_qscale / FF_QP2LAMBDA);
qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax); qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
s->avctx->qmin, s->avctx->qmax);
} }
assert(toobig <= 40); assert(toobig <= 40);
av_log(s->avctx, AV_LOG_DEBUG, av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
s->bit_rate, s->bit_rate,
(int)(expected_bits / ((double)all_available_bits/s->bit_rate))); (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
av_log(s->avctx, AV_LOG_DEBUG, av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] estimated target average qp: %.3f\n", "[lavc rc] estimated target average qp: %.3f\n",
(float)qscale_sum / rcc->num_entries); (float)qscale_sum / rcc->num_entries);
if (toobig == 0) { if (toobig == 0) {
av_log(s->avctx, AV_LOG_INFO, av_log(s->avctx, AV_LOG_INFO,
"[lavc rc] Using all of requested bitrate is not " "[lavc rc] Using all of requested bitrate is not "
"necessary for this video with these parameters.\n"); "necessary for this video with these parameters.\n");
} else if (toobig == 40) { } else if (toobig == 40) {
av_log(s->avctx, AV_LOG_ERROR, av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: bitrate too low for this video " "[lavc rc] Error: bitrate too low for this video "
"with these parameters.\n"); "with these parameters.\n");
return -1; return -1;
} else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) { } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
av_log(s->avctx, AV_LOG_ERROR, av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: 2pass curve failed to converge\n"); "[lavc rc] Error: 2pass curve failed to converge\n");
return -1; return -1;
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment