Commit ed492b61 authored by Alex Converse's avatar Alex Converse

Add an HE-AAC v1 decoder.

A large portion of this code was orignally authored by Robert Swain. The rest
was written by me. Full history is available at:
svn://svn.ffmpeg.org/soc/aac-sbr
http://github.com/aconverse/ffmpeg-heaac/tree/sbr_pub

Originally committed as revision 22316 to svn://svn.ffmpeg.org/ffmpeg/trunk
parent f19341e1
......@@ -61,6 +61,7 @@ version <next>:
- FFprobe tool
- AMR-NB decoder
- RTSP muxer
- HE-AAC v1 decoder
......
......@@ -41,7 +41,7 @@ OBJS-$(CONFIG_VAAPI) += vaapi.o
OBJS-$(CONFIG_VDPAU) += vdpau.o
# decoders/encoders/hardware accelerators
OBJS-$(CONFIG_AAC_DECODER) += aac.o aactab.o
OBJS-$(CONFIG_AAC_DECODER) += aac.o aactab.o aacsbr.o
OBJS-$(CONFIG_AAC_ENCODER) += aacenc.o aaccoder.o \
aacpsy.o aactab.o \
psymodel.o iirfilter.o \
......
......@@ -62,7 +62,7 @@
* N MIDI
* N Harmonic and Individual Lines plus Noise
* N Text-To-Speech Interface
* N (in progress) Spectral Band Replication
* Y Spectral Band Replication
* Y (not in this code) Layer-1
* Y (not in this code) Layer-2
* Y (not in this code) Layer-3
......@@ -86,6 +86,8 @@
#include "aac.h"
#include "aactab.h"
#include "aacdectab.h"
#include "sbr.h"
#include "aacsbr.h"
#include "mpeg4audio.h"
#include "aac_parser.h"
......@@ -180,14 +182,18 @@ static av_cold int che_configure(AACContext *ac,
if (che_pos[type][id]) {
if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
return AVERROR(ENOMEM);
ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
if (type != TYPE_CCE) {
ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
if (type == TYPE_CPE) {
ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
}
}
} else
} else {
if (ac->che[type][id])
ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
av_freep(&ac->che[type][id]);
}
return 0;
}
......@@ -530,6 +536,8 @@ static av_cold int aac_decode_init(AVCodecContext *avccontext)
AAC_INIT_VLC_STATIC( 9, 366);
AAC_INIT_VLC_STATIC(10, 462);
ff_aac_sbr_init();
dsputil_init(&ac->dsp, avccontext);
ac->random_state = 0x1f2e3d4c;
......@@ -1544,23 +1552,6 @@ static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
return 0;
}
/**
* Decode Spectral Band Replication extension data; reference: table 4.55.
*
* @param crc flag indicating the presence of CRC checksum
* @param cnt length of TYPE_FIL syntactic element in bytes
*
* @return Returns number of bytes consumed from the TYPE_FIL element.
*/
static int decode_sbr_extension(AACContext *ac, GetBitContext *gb,
int crc, int cnt)
{
// TODO : sbr_extension implementation
av_log_missing_feature(ac->avccontext, "SBR", 0);
skip_bits_long(gb, 8 * cnt - 4); // -4 due to reading extension type
return cnt;
}
/**
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
*
......@@ -1641,7 +1632,8 @@ static int decode_dynamic_range(DynamicRangeControl *che_drc,
*
* @return Returns number of bytes consumed
*/
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt)
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
ChannelElement *che, enum RawDataBlockType elem_type)
{
int crc_flag = 0;
int res = cnt;
......@@ -1649,7 +1641,21 @@ static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt)
case EXT_SBR_DATA_CRC:
crc_flag++;
case EXT_SBR_DATA:
res = decode_sbr_extension(ac, gb, crc_flag, cnt);
if (!che) {
av_log(ac->avccontext, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
return res;
} else if (!ac->m4ac.sbr) {
av_log(ac->avccontext, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
skip_bits_long(gb, 8 * cnt - 4);
return res;
} else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
av_log(ac->avccontext, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
skip_bits_long(gb, 8 * cnt - 4);
return res;
} else {
ac->m4ac.sbr = 1;
}
res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
break;
case EXT_DYNAMIC_RANGE:
res = decode_dynamic_range(&ac->che_drc, gb, cnt);
......@@ -1830,8 +1836,9 @@ static void apply_independent_coupling(AACContext *ac,
const float bias = ac->add_bias;
const float *src = cce->ch[0].ret;
float *dest = target->ret;
const int len = 1024 << (ac->m4ac.sbr == 1);
for (i = 0; i < 1024; i++)
for (i = 0; i < len; i++)
dest[i] += gain * (src[i] - bias);
}
......@@ -1889,10 +1896,18 @@ static void spectral_to_sample(AACContext *ac)
apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
if (type <= TYPE_CPE)
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
imdct_and_windowing(ac, &che->ch[0]);
if (type == TYPE_CPE)
if (ac->m4ac.sbr > 0) {
ff_sbr_dequant(ac, &che->sbr, type == TYPE_CPE ? TYPE_CPE : TYPE_SCE);
ff_sbr_apply(ac, &che->sbr, 0, che->ch[0].ret, che->ch[0].ret);
}
}
if (type == TYPE_CPE) {
imdct_and_windowing(ac, &che->ch[1]);
if (ac->m4ac.sbr > 0)
ff_sbr_apply(ac, &che->sbr, 1, che->ch[1].ret, che->ch[1].ret);
}
if (type <= TYPE_CCE)
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
}
......@@ -1942,9 +1957,9 @@ static int aac_decode_frame(AVCodecContext *avccontext, void *data,
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
AACContext *ac = avccontext->priv_data;
ChannelElement *che = NULL;
ChannelElement *che = NULL, *che_prev = NULL;
GetBitContext gb;
enum RawDataBlockType elem_type;
enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
int err, elem_id, data_size_tmp;
int buf_consumed;
int samples = 1024, multiplier;
......@@ -2014,7 +2029,7 @@ static int aac_decode_frame(AVCodecContext *avccontext, void *data,
return -1;
}
while (elem_id > 0)
elem_id -= decode_extension_payload(ac, &gb, elem_id);
elem_id -= decode_extension_payload(ac, &gb, elem_id, che_prev, elem_type_prev);
err = 0; /* FIXME */
break;
......@@ -2023,6 +2038,9 @@ static int aac_decode_frame(AVCodecContext *avccontext, void *data,
break;
}
che_prev = che;
elem_type_prev = elem_type;
if (err)
return err;
......@@ -2034,14 +2052,14 @@ static int aac_decode_frame(AVCodecContext *avccontext, void *data,
spectral_to_sample(ac);
multiplier = 0;
multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
samples <<= multiplier;
if (ac->output_configured < OC_LOCKED) {
avccontext->sample_rate = ac->m4ac.sample_rate << multiplier;
avccontext->frame_size = samples;
}
data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
data_size_tmp = samples * avccontext->channels * sizeof(int16_t);
if (*data_size < data_size_tmp) {
av_log(avccontext, AV_LOG_ERROR,
"Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
......@@ -2050,7 +2068,7 @@ static int aac_decode_frame(AVCodecContext *avccontext, void *data,
}
*data_size = data_size_tmp;
ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avccontext->channels);
if (ac->output_configured)
ac->output_configured = OC_LOCKED;
......@@ -2065,8 +2083,11 @@ static av_cold int aac_decode_close(AVCodecContext *avccontext)
int i, type;
for (i = 0; i < MAX_ELEM_ID; i++) {
for (type = 0; type < 4; type++)
for (type = 0; type < 4; type++) {
if (ac->che[type][i])
ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
av_freep(&ac->che[type][i]);
}
}
ff_mdct_end(&ac->mdct);
......
......@@ -34,6 +34,7 @@
#include "dsputil.h"
#include "fft.h"
#include "mpeg4audio.h"
#include "sbr.h"
#include <stdint.h>
......@@ -217,7 +218,7 @@ typedef struct {
uint8_t zeroes[128]; ///< band is not coded (used by encoder)
DECLARE_ALIGNED(16, float, coeffs)[1024]; ///< coefficients for IMDCT
DECLARE_ALIGNED(16, float, saved)[1024]; ///< overlap
DECLARE_ALIGNED(16, float, ret)[1024]; ///< PCM output
DECLARE_ALIGNED(16, float, ret)[2048]; ///< PCM output
PredictorState predictor_state[MAX_PREDICTORS];
} SingleChannelElement;
......@@ -233,6 +234,7 @@ typedef struct {
SingleChannelElement ch[2];
// CCE specific
ChannelCoupling coup;
SpectralBandReplication sbr;
} ChannelElement;
/**
......
/*
* AAC Spectral Band Replication decoding functions
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/aacsbr.c
* AAC Spectral Band Replication decoding functions
* @author Robert Swain ( rob opendot cl )
*/
#include "aac.h"
#include "sbr.h"
#include "aacsbr.h"
#include "aacsbrdata.h"
#include <stdint.h>
#include <float.h>
#define ENVELOPE_ADJUSTMENT_OFFSET 2
#define NOISE_FLOOR_OFFSET 6.0f
/**
* SBR VLC tables
*/
enum {
T_HUFFMAN_ENV_1_5DB,
F_HUFFMAN_ENV_1_5DB,
T_HUFFMAN_ENV_BAL_1_5DB,
F_HUFFMAN_ENV_BAL_1_5DB,
T_HUFFMAN_ENV_3_0DB,
F_HUFFMAN_ENV_3_0DB,
T_HUFFMAN_ENV_BAL_3_0DB,
F_HUFFMAN_ENV_BAL_3_0DB,
T_HUFFMAN_NOISE_3_0DB,
T_HUFFMAN_NOISE_BAL_3_0DB,
};
/**
* bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
*/
enum {
FIXFIX,
FIXVAR,
VARFIX,
VARVAR,
};
enum {
EXTENSION_ID_PS = 2,
};
static VLC vlc_sbr[10];
static const int8_t vlc_sbr_lav[10] =
{ 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
static const DECLARE_ALIGNED(16, float, zero64)[64];
#define SBR_INIT_VLC_STATIC(num, size) \
INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
sbr_tmp[num].sbr_bits , 1, 1, \
sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
size)
#define SBR_VLC_ROW(name) \
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
av_cold void ff_aac_sbr_init(void)
{
int n, k;
static const struct {
const void *sbr_codes, *sbr_bits;
const unsigned int table_size, elem_size;
} sbr_tmp[] = {
SBR_VLC_ROW(t_huffman_env_1_5dB),
SBR_VLC_ROW(f_huffman_env_1_5dB),
SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
SBR_VLC_ROW(t_huffman_env_3_0dB),
SBR_VLC_ROW(f_huffman_env_3_0dB),
SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
SBR_VLC_ROW(t_huffman_noise_3_0dB),
SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
};
// SBR VLC table initialization
SBR_INIT_VLC_STATIC(0, 1098);
SBR_INIT_VLC_STATIC(1, 1092);
SBR_INIT_VLC_STATIC(2, 768);
SBR_INIT_VLC_STATIC(3, 1026);
SBR_INIT_VLC_STATIC(4, 1058);
SBR_INIT_VLC_STATIC(5, 1052);
SBR_INIT_VLC_STATIC(6, 544);
SBR_INIT_VLC_STATIC(7, 544);
SBR_INIT_VLC_STATIC(8, 592);
SBR_INIT_VLC_STATIC(9, 512);
for (n = 0; n < 64; n++) {
float pre = M_PI * n / 64;
analysis_cos_pre[n] = cosf(pre);
analysis_sin_pre[n] = sinf(pre);
}
for (k = 0; k < 32; k++) {
float post = M_PI * (k + 0.5) / 128;
analysis_cossin_post[k][0] = 4.0 * cosf(post);
analysis_cossin_post[k][1] = -4.0 * sinf(post);
}
for (n = 1; n < 320; n++)
sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
for (n = 0; n < 320; n++)
sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
}
av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
{
sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
}
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
{
ff_mdct_end(&sbr->mdct);
ff_rdft_end(&sbr->rdft);
}
static int qsort_comparison_function_int16(const void *a, const void *b)
{
return *(const int16_t *)a - *(const int16_t *)b;
}
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
{
int i;
for (i = 0; i <= last_el; i++)
if (table[i] == needle)
return 1;
return 0;
}
/// Limiter Frequency Band Table (14496-3 sp04 p198)
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
{
int k;
if (sbr->bs_limiter_bands > 0) {
static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
1.18509277094158210129f, //2^(0.49/2)
1.11987160404675912501f }; //2^(0.49/3)
const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
int16_t patch_borders[5];
uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
patch_borders[0] = sbr->kx[1];
for (k = 1; k <= sbr->num_patches; k++)
patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
memcpy(sbr->f_tablelim, sbr->f_tablelow,
(sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
if (sbr->num_patches > 1)
memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
(sbr->num_patches - 1) * sizeof(patch_borders[0]));
qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
sizeof(sbr->f_tablelim[0]),
qsort_comparison_function_int16);
sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
while (out < sbr->f_tablelim + sbr->n_lim) {
if (*in >= *out * lim_bands_per_octave_warped) {
*++out = *in++;
} else if (*in == *out ||
!in_table_int16(patch_borders, sbr->num_patches, *in)) {
in++;
sbr->n_lim--;
} else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
*out = *in++;
sbr->n_lim--;
} else {
*++out = *in++;
}
}
} else {
sbr->f_tablelim[0] = sbr->f_tablelow[0];
sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
sbr->n_lim = 1;
}
}
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
{
unsigned int cnt = get_bits_count(gb);
uint8_t bs_header_extra_1;
uint8_t bs_header_extra_2;
int old_bs_limiter_bands = sbr->bs_limiter_bands;
SpectrumParameters old_spectrum_params;
sbr->start = 1;
// Save last spectrum parameters variables to compare to new ones
memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
sbr->bs_amp_res_header = get_bits1(gb);
sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
skip_bits(gb, 2); // bs_reserved
bs_header_extra_1 = get_bits1(gb);
bs_header_extra_2 = get_bits1(gb);
if (bs_header_extra_1) {
sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
} else {
sbr->spectrum_params.bs_freq_scale = 2;
sbr->spectrum_params.bs_alter_scale = 1;
sbr->spectrum_params.bs_noise_bands = 2;
}
// Check if spectrum parameters changed
if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
sbr->reset = 1;
if (bs_header_extra_2) {
sbr->bs_limiter_bands = get_bits(gb, 2);
sbr->bs_limiter_gains = get_bits(gb, 2);
sbr->bs_interpol_freq = get_bits1(gb);
sbr->bs_smoothing_mode = get_bits1(gb);
} else {
sbr->bs_limiter_bands = 2;
sbr->bs_limiter_gains = 2;
sbr->bs_interpol_freq = 1;
sbr->bs_smoothing_mode = 1;
}
if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
sbr_make_f_tablelim(sbr);
return get_bits_count(gb) - cnt;
}
static int array_min_int16(const int16_t *array, int nel)
{
int i, min = array[0];
for (i = 1; i < nel; i++)
min = FFMIN(array[i], min);
return min;
}
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
{
int k, previous, present;
float base, prod;
base = powf((float)stop / start, 1.0f / num_bands);
prod = start;
previous = start;
for (k = 0; k < num_bands-1; k++) {
prod *= base;
present = lrintf(prod);
bands[k] = present - previous;
previous = present;
}
bands[num_bands-1] = stop - previous;
}
static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
{
// Requirements (14496-3 sp04 p205)
if (n_master <= 0) {
av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
return -1;
}
if (bs_xover_band >= n_master) {
av_log(avccontext, AV_LOG_ERROR,
"Invalid bitstream, crossover band index beyond array bounds: %d\n",
bs_xover_band);
return -1;
}
return 0;
}
/// Master Frequency Band Table (14496-3 sp04 p194)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
SpectrumParameters *spectrum)
{
unsigned int temp, max_qmf_subbands;
unsigned int start_min, stop_min;
int k;
const int8_t *sbr_offset_ptr;
int16_t stop_dk[13];
if (sbr->sample_rate < 32000) {
temp = 3000;
} else if (sbr->sample_rate < 64000) {
temp = 4000;
} else
temp = 5000;
start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
switch (sbr->sample_rate) {
case 16000:
sbr_offset_ptr = sbr_offset[0];
break;
case 22050:
sbr_offset_ptr = sbr_offset[1];
break;
case 24000:
sbr_offset_ptr = sbr_offset[2];
break;
case 32000:
sbr_offset_ptr = sbr_offset[3];
break;
case 44100: case 48000: case 64000:
sbr_offset_ptr = sbr_offset[4];
break;
case 88200: case 96000: case 128000: case 176400: case 192000:
sbr_offset_ptr = sbr_offset[5];
break;
default:
av_log(ac->avccontext, AV_LOG_ERROR,
"Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
return -1;
}
sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
if (spectrum->bs_stop_freq < 14) {
sbr->k[2] = stop_min;
make_bands(stop_dk, stop_min, 64, 13);
qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
for (k = 0; k < spectrum->bs_stop_freq; k++)
sbr->k[2] += stop_dk[k];
} else if (spectrum->bs_stop_freq == 14) {
sbr->k[2] = 2*sbr->k[0];
} else if (spectrum->bs_stop_freq == 15) {
sbr->k[2] = 3*sbr->k[0];
} else {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
return -1;
}
sbr->k[2] = FFMIN(64, sbr->k[2]);
// Requirements (14496-3 sp04 p205)
if (sbr->sample_rate <= 32000) {
max_qmf_subbands = 48;
} else if (sbr->sample_rate == 44100) {
max_qmf_subbands = 35;
} else if (sbr->sample_rate >= 48000)
max_qmf_subbands = 32;
if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
return -1;
}
if (!spectrum->bs_freq_scale) {
unsigned int dk;
int k2diff;
dk = spectrum->bs_alter_scale + 1;
sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
return -1;
for (k = 1; k <= sbr->n_master; k++)
sbr->f_master[k] = dk;
k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
if (k2diff < 0) {
sbr->f_master[1]--;
sbr->f_master[2]-= (k2diff < 1);
} else if (k2diff) {
sbr->f_master[sbr->n_master]++;
}
sbr->f_master[0] = sbr->k[0];
for (k = 1; k <= sbr->n_master; k++)
sbr->f_master[k] += sbr->f_master[k - 1];
} else {
int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
int two_regions, num_bands_0;
int vdk0_max, vdk1_min;
int16_t vk0[49];
if (49 * sbr->k[2] > 110 * sbr->k[0]) {
two_regions = 1;
sbr->k[1] = 2 * sbr->k[0];
} else {
two_regions = 0;
sbr->k[1] = sbr->k[2];
}
num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
return -1;
}
vk0[0] = 0;
make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
vdk0_max = vk0[num_bands_0];
vk0[0] = sbr->k[0];
for (k = 1; k <= num_bands_0; k++) {
if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
return -1;
}
vk0[k] += vk0[k-1];
}
if (two_regions) {
int16_t vk1[49];
float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
: 1.0f; // bs_alter_scale = {0,1}
int num_bands_1 = lrintf(half_bands * invwarp *
log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
if (vdk1_min < vdk0_max) {
int change;
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
vk1[1] += change;
vk1[num_bands_1] -= change;
}
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
vk1[0] = sbr->k[1];
for (k = 1; k <= num_bands_1; k++) {
if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
return -1;
}
vk1[k] += vk1[k-1];
}
sbr->n_master = num_bands_0 + num_bands_1;
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
return -1;
memcpy(&sbr->f_master[0], vk0,
(num_bands_0 + 1) * sizeof(sbr->f_master[0]));
memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
num_bands_1 * sizeof(sbr->f_master[0]));
} else {
sbr->n_master = num_bands_0;
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
return -1;
memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
}
}
return 0;
}
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
{
int i, k, sb = 0;
int msb = sbr->k[0];
int usb = sbr->kx[1];
int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
sbr->num_patches = 0;
if (goal_sb < sbr->kx[1] + sbr->m[1]) {
for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
} else
k = sbr->n_master;
do {
int odd = 0;
for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
sb = sbr->f_master[i];
odd = (sb + sbr->k[0]) & 1;
}
sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
usb = sb;
msb = sb;
sbr->num_patches++;
} else
msb = sbr->kx[1];
if (sbr->f_master[k] - sb < 3)
k = sbr->n_master;
} while (sb != sbr->kx[1] + sbr->m[1]);
if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
sbr->num_patches--;
// Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
// However the Coding Technologies decoder check uses 6 patches
if (sbr->num_patches > 6) {
av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
return -1;
}
return 0;
}
/// Derived Frequency Band Tables (14496-3 sp04 p197)
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
{
int k, temp;
sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
sbr->n[0] = (sbr->n[1] + 1) >> 1;
memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
(sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
sbr->kx[1] = sbr->f_tablehigh[0];
// Requirements (14496-3 sp04 p205)
if (sbr->kx[1] + sbr->m[1] > 64) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
return -1;
}
if (sbr->kx[1] > 32) {
av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
return -1;
}
sbr->f_tablelow[0] = sbr->f_tablehigh[0];
temp = sbr->n[1] & 1;
for (k = 1; k <= sbr->n[0]; k++)
sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
if (sbr->n_q > 5) {
av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
return -1;
}
sbr->f_tablenoise[0] = sbr->f_tablelow[0];
temp = 0;
for (k = 1; k <= sbr->n_q; k++) {
temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
}
if (sbr_hf_calc_npatches(ac, sbr) < 0)
return -1;
sbr_make_f_tablelim(sbr);
sbr->data[0].f_indexnoise = 0;
sbr->data[1].f_indexnoise = 0;
return 0;
}
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
int elements)
{
int i;
for (i = 0; i < elements; i++) {
vec[i] = get_bits1(gb);
}
}
/** ceil(log2(index+1)) */
static const int8_t ceil_log2[] = {
0, 1, 2, 2, 3, 3,
};
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb, SBRData *ch_data)
{
int i;
ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
ch_data->bs_amp_res = sbr->bs_amp_res_header;
switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
case FIXFIX:
ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
if (ch_data->bs_num_env[1] == 1)
ch_data->bs_amp_res = 0;
ch_data->bs_freq_res[1] = get_bits1(gb);
for (i = 1; i < ch_data->bs_num_env[1]; i++)
ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
break;
case FIXVAR:
ch_data->bs_var_bord[1] = get_bits(gb, 2);
ch_data->bs_num_rel[1] = get_bits(gb, 2);
ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
for (i = 0; i < ch_data->bs_num_rel[1]; i++)
ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
for (i = 0; i < ch_data->bs_num_env[1]; i++)
ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
break;
case VARFIX:
ch_data->bs_var_bord[0] = get_bits(gb, 2);
ch_data->bs_num_rel[0] = get_bits(gb, 2);
ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
for (i = 0; i < ch_data->bs_num_rel[0]; i++)
ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
break;
case VARVAR:
ch_data->bs_var_bord[0] = get_bits(gb, 2);
ch_data->bs_var_bord[1] = get_bits(gb, 2);
ch_data->bs_num_rel[0] = get_bits(gb, 2);
ch_data->bs_num_rel[1] = get_bits(gb, 2);
ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
for (i = 0; i < ch_data->bs_num_rel[0]; i++)
ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
for (i = 0; i < ch_data->bs_num_rel[1]; i++)
ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
break;
}
if (ch_data->bs_frame_class == FIXFIX && ch_data->bs_num_env[1] > 4) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
ch_data->bs_num_env[1]);
return -1;
}
if (ch_data->bs_frame_class == VARVAR && ch_data->bs_num_env[1] > 5) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
ch_data->bs_num_env[1]);
return -1;
}
ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
return 0;
}
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
//These variables are saved from the previous frame rather than copied
dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
dst->bs_num_env[0] = dst->bs_num_env[1];
//These variables are read from the bitstream and therefore copied
memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
dst->bs_amp_res = src->bs_amp_res;
dst->bs_num_noise = src->bs_num_noise;
dst->bs_pointer = src->bs_pointer;
dst->bs_frame_class = src->bs_frame_class;
}
/// Read how the envelope and noise floor data is delta coded
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
SBRData *ch_data)
{
get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
}
/// Read inverse filtering data
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
SBRData *ch_data)
{
int i;
memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
for (i = 0; i < sbr->n_q; i++)
ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
}
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
SBRData *ch_data, int ch)
{
int bits;
int i, j, k;
VLC_TYPE (*t_huff)[2], (*f_huff)[2];
int t_lav, f_lav;
const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
const int odd = sbr->n[1] & 1;
if (sbr->bs_coupling && ch) {
if (ch_data->bs_amp_res) {
bits = 5;
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
} else {
bits = 6;
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
}
} else {
if (ch_data->bs_amp_res) {
bits = 6;
t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
} else {
bits = 7;
t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
}
}
for (i = 0; i < ch_data->bs_num_env[1]; i++) {
if (ch_data->bs_df_env[i]) {
// bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
} else if (ch_data->bs_freq_res[i + 1]) {
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
}
} else {
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
}
}
} else {
ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
}
}
//assign 0th elements of env_facs from last elements
memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
sizeof(ch_data->env_facs[0]));
}
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
SBRData *ch_data, int ch)
{
int i, j;
VLC_TYPE (*t_huff)[2], (*f_huff)[2];
int t_lav, f_lav;
int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
if (sbr->bs_coupling && ch) {
t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
} else {
t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
}
for (i = 0; i < ch_data->bs_num_noise; i++) {
if (ch_data->bs_df_noise[i]) {
for (j = 0; j < sbr->n_q; j++)
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
} else {
ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
for (j = 1; j < sbr->n_q; j++)
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
}
}
//assign 0th elements of noise_facs from last elements
memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
sizeof(ch_data->noise_facs[0]));
}
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb,
int bs_extension_id, int *num_bits_left)
{
//TODO - implement ps_data for parametric stereo parsing
switch (bs_extension_id) {
case EXTENSION_ID_PS:
#if 0
*num_bits_left -= ff_ps_data(gb, ps);
#else
av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
skip_bits_long(gb, *num_bits_left); // bs_fill_bits
*num_bits_left = 0;
#endif
break;
default:
av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
skip_bits_long(gb, *num_bits_left); // bs_fill_bits
*num_bits_left = 0;
break;
}
}
static void read_sbr_single_channel_element(AACContext *ac,
SpectralBandReplication *sbr,
GetBitContext *gb)
{
if (get_bits1(gb)) // bs_data_extra
skip_bits(gb, 4); // bs_reserved
read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
read_sbr_invf(sbr, gb, &sbr->data[0]);
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
}
static void read_sbr_channel_pair_element(AACContext *ac,
SpectralBandReplication *sbr,
GetBitContext *gb)
{
if (get_bits1(gb)) // bs_data_extra
skip_bits(gb, 8); // bs_reserved
if ((sbr->bs_coupling = get_bits1(gb))) {
read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
read_sbr_dtdf(sbr, gb, &sbr->data[1]);
read_sbr_invf(sbr, gb, &sbr->data[0]);
memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
read_sbr_noise(sbr, gb, &sbr->data[1], 1);
} else {
read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
read_sbr_grid(ac, sbr, gb, &sbr->data[1]);
read_sbr_dtdf(sbr, gb, &sbr->data[0]);
read_sbr_dtdf(sbr, gb, &sbr->data[1]);
read_sbr_invf(sbr, gb, &sbr->data[0]);
read_sbr_invf(sbr, gb, &sbr->data[1]);
read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
read_sbr_noise(sbr, gb, &sbr->data[0], 0);
read_sbr_noise(sbr, gb, &sbr->data[1], 1);
}
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
}
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb, int id_aac)
{
unsigned int cnt = get_bits_count(gb);
if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
read_sbr_single_channel_element(ac, sbr, gb);
} else if (id_aac == TYPE_CPE) {
read_sbr_channel_pair_element(ac, sbr, gb);
} else {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
sbr->start = 0;
return get_bits_count(gb) - cnt;
}
if (get_bits1(gb)) { // bs_extended_data
int num_bits_left = get_bits(gb, 4); // bs_extension_size
if (num_bits_left == 15)
num_bits_left += get_bits(gb, 8); // bs_esc_count
num_bits_left <<= 3;
while (num_bits_left > 7) {
num_bits_left -= 2;
read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
}
}
return get_bits_count(gb) - cnt;
}
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
{
int err;
err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
if (err >= 0)
err = sbr_make_f_derived(ac, sbr);
if (err < 0) {
av_log(ac->avccontext, AV_LOG_ERROR,
"SBR reset failed. Switching SBR to pure upsampling mode.\n");
sbr->start = 0;
}
}
/**
* Decode Spectral Band Replication extension data; reference: table 4.55.
*
* @param crc flag indicating the presence of CRC checksum
* @param cnt length of TYPE_FIL syntactic element in bytes
*
* @return Returns number of bytes consumed from the TYPE_FIL element.
*/
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb_host, int crc, int cnt, int id_aac)
{
unsigned int num_sbr_bits = 0, num_align_bits;
unsigned bytes_read;
GetBitContext gbc = *gb_host, *gb = &gbc;
skip_bits_long(gb_host, cnt*8 - 4);
sbr->reset = 0;
if (!sbr->sample_rate)
sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
if (!ac->m4ac.ext_sample_rate)
ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
if (crc) {
skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
num_sbr_bits += 10;
}
//Save some state from the previous frame.
sbr->kx[0] = sbr->kx[1];
sbr->m[0] = sbr->m[1];
num_sbr_bits++;
if (get_bits1(gb)) // bs_header_flag
num_sbr_bits += read_sbr_header(sbr, gb);
if (sbr->reset)
sbr_reset(ac, sbr);
if (sbr->start)
num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
if (bytes_read > cnt) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
}
return cnt;
}
/// Time/frequency Grid (14496-3 sp04 p200)
static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr,
SBRData *ch_data, int ch)
{
int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
// frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
int n_rel_lead;
int i;
if (ch_data->bs_frame_class == FIXFIX) {
n_rel_lead = ch_data->bs_num_env[1] - 1;
} else if (ch_data->bs_frame_class == FIXVAR) {
n_rel_lead = 0;
} else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
n_rel_lead = ch_data->bs_num_rel[0];
} else {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
return -1;
}
ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
ch_data->t_env[0] = abs_bord_lead;
ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
if (ch_data->bs_frame_class == FIXFIX) {
int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
ch_data->bs_num_env[1];
for (i = 0; i < n_rel_lead; i++)
ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
} else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
for (i = 0; i < n_rel_lead; i++)
ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
} else { // FIXVAR
for (i = 0; i < n_rel_lead; i++)
ch_data->t_env[i + 1] = abs_bord_lead;
}
if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
ch_data->t_env[i] = ch_data->t_env[i + 1] -
ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
} else { // FIXFIX or VARFIX
for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
ch_data->t_env[i + 1] = abs_bord_trail;
}
ch_data->t_q[0] = ch_data->t_env[0];
if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
unsigned int idx;
if (ch_data->bs_frame_class == FIXFIX) {
idx = ch_data->bs_num_env[1] >> 1;
} else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
} else { // VARFIX
if (!ch_data->bs_pointer)
idx = 1;
else if (ch_data->bs_pointer == 1)
idx = ch_data->bs_num_env[1] - 1;
else // bs_pointer > 1
idx = ch_data->bs_pointer - 1;
}
ch_data->t_q[1] = ch_data->t_env[idx];
ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
} else
ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
return 0;
}
/// Dequantization and stereo decoding (14496-3 sp04 p203)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
{
int k, e;
int ch;
if (id_aac == TYPE_CPE && sbr->bs_coupling) {
float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
float fac = temp1 / (1.0f + temp2);
sbr->data[0].env_facs[e][k] = fac;
sbr->data[1].env_facs[e][k] = fac * temp2;
}
}
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
for (k = 0; k < sbr->n_q; k++) {
float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
float fac = temp1 / (1.0f + temp2);
sbr->data[0].noise_facs[e][k] = fac;
sbr->data[1].noise_facs[e][k] = fac * temp2;
}
}
} else { // SCE or one non-coupled CPE
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
sbr->data[ch].env_facs[e][k] =
exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
for (k = 0; k < sbr->n_q; k++)
sbr->data[ch].noise_facs[e][k] =
exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
}
}
}
/**
* Analysis QMF Bank (14496-3 sp04 p206)
*
* @param x pointer to the beginning of the first sample window
* @param W array of complex-valued samples split into subbands
*/
static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
float z[320], float W[2][32][32][2],
float bias, float scale)
{
int i, k;
memcpy(W[0], W[1], sizeof(W[0]));
memcpy(x , x+1024, (320-32)*sizeof(x[0]));
if (scale != 1.0f || bias != 0.0f)
for (i = 0; i < 1024; i++)
x[288 + i] = (in[i] - bias) * scale;
else
memcpy(x+288, in, 1024*sizeof(*x));
for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
// are not supported
float re, im;
dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
for (k = 0; k < 64; k++) {
float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
z[k] = f * analysis_cos_pre[k];
z[k+64] = f;
}
ff_rdft_calc(rdft, z);
re = z[0] * 0.5f;
im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
for (k = 1; k < 32; k++) {
re = z[2*k ] - re;
im = z[2*k+1] - im;
W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
}
x += 32;
}
}
/**
* Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
* (14496-3 sp04 p206)
*/
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
float *out, float X[2][32][64],
float mdct_buf[2][64],
float *v0, int *v_off, const unsigned int div,
float bias, float scale)
{
int i, n;
const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
int scale_and_bias = scale != 1.0f || bias != 0.0f;
float *v;
for (i = 0; i < 32; i++) {
if (*v_off == 0) {
int saved_samples = (1280 - 128) >> div;
memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
*v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
} else {
*v_off -= 128 >> div;
}
v = v0 + *v_off;
for (n = 1; n < 64 >> div; n+=2) {
X[1][i][n] = -X[1][i][n];
}
if (div) {
memset(X[0][i]+32, 0, 32*sizeof(float));
memset(X[1][i]+32, 0, 32*sizeof(float));
}
ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
if (div) {
for (n = 0; n < 32; n++) {
v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
}
} else {
for (n = 0; n < 64; n++) {
v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
}
}
dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
if (scale_and_bias)
for (n = 0; n < 64 >> div; n++)
out[n] = out[n] * scale + bias;
out += 64 >> div;
}
}
static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
{
int i;
float real_sum = 0.0f;
float imag_sum = 0.0f;
if (lag) {
for (i = 1; i < 38; i++) {
real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
}
phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
if (lag == 1) {
phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
}
} else {
for (i = 1; i < 38; i++) {
real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
}
phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
}
}
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
* (14496-3 sp04 p214)
* Warning: This routine does not seem numerically stable.
*/
static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
const float X_low[32][40][2], int k0)
{
int k;
for (k = 0; k < k0; k++) {
float phi[3][2][2], dk;
autocorrelate(X_low[k], phi, 0);
autocorrelate(X_low[k], phi, 1);
autocorrelate(X_low[k], phi, 2);
dk = phi[2][1][0] * phi[1][0][0] -
(phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
if (!dk) {
alpha1[k][0] = 0;
alpha1[k][1] = 0;
} else {
float temp_real, temp_im;
temp_real = phi[0][0][0] * phi[1][1][0] -
phi[0][0][1] * phi[1][1][1] -
phi[0][1][0] * phi[1][0][0];
temp_im = phi[0][0][0] * phi[1][1][1] +
phi[0][0][1] * phi[1][1][0] -
phi[0][1][1] * phi[1][0][0];
alpha1[k][0] = temp_real / dk;
alpha1[k][1] = temp_im / dk;
}
if (!phi[1][0][0]) {
alpha0[k][0] = 0;
alpha0[k][1] = 0;
} else {
float temp_real, temp_im;
temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
alpha1[k][1] * phi[1][1][1];
temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
alpha1[k][0] * phi[1][1][1];
alpha0[k][0] = -temp_real / phi[1][0][0];
alpha0[k][1] = -temp_im / phi[1][0][0];
}
if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
alpha1[k][0] = 0;
alpha1[k][1] = 0;
alpha0[k][0] = 0;
alpha0[k][1] = 0;
}
}
}
/// Chirp Factors (14496-3 sp04 p214)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
{
int i;
float new_bw;
static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
for (i = 0; i < sbr->n_q; i++) {
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
new_bw = 0.6f;
} else
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
if (new_bw < ch_data->bw_array[i]) {
new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
} else
new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
}
}
/// Generate the subband filtered lowband
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
float X_low[32][40][2], const float W[2][32][32][2])
{
int i, k;
const int t_HFGen = 8;
const int i_f = 32;
memset(X_low, 0, 32*sizeof(*X_low));
for (k = 0; k < sbr->kx[1]; k++) {
for (i = t_HFGen; i < i_f + t_HFGen; i++) {
X_low[k][i][0] = W[1][i - t_HFGen][k][0];
X_low[k][i][1] = W[1][i - t_HFGen][k][1];
}
}
for (k = 0; k < sbr->kx[0]; k++) {
for (i = 0; i < t_HFGen; i++) {
X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
}
}
return 0;
}
/// High Frequency Generator (14496-3 sp04 p215)
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
float X_high[64][40][2], const float X_low[32][40][2],
const float (*alpha0)[2], const float (*alpha1)[2],
const float bw_array[5], const uint8_t *t_env,
int bs_num_env)
{
int i, j, x;
int g = 0;
int k = sbr->kx[1];
for (j = 0; j < sbr->num_patches; j++) {
for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
float alpha[4];
const int p = sbr->patch_start_subband[j] + x;
while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
g++;
g--;
if (g < 0) {
av_log(ac->avccontext, AV_LOG_ERROR,
"ERROR : no subband found for frequency %d\n", k);
return -1;
}
alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
alpha[2] = alpha0[p][0] * bw_array[g];
alpha[3] = alpha0[p][1] * bw_array[g];
for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
X_high[k][idx][0] =
X_low[p][idx - 2][0] * alpha[0] -
X_low[p][idx - 2][1] * alpha[1] +
X_low[p][idx - 1][0] * alpha[2] -
X_low[p][idx - 1][1] * alpha[3] +
X_low[p][idx][0];
X_high[k][idx][1] =
X_low[p][idx - 2][1] * alpha[0] +
X_low[p][idx - 2][0] * alpha[1] +
X_low[p][idx - 1][1] * alpha[2] +
X_low[p][idx - 1][0] * alpha[3] +
X_low[p][idx][1];
}
}
}
if (k < sbr->m[1] + sbr->kx[1])
memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
return 0;
}
/// Generate the subband filtered lowband
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
const float X_low[32][40][2], const float Y[2][38][64][2],
int ch)
{
int k, i;
const int i_f = 32;
const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
memset(X, 0, 2*sizeof(*X));
for (k = 0; k < sbr->kx[0]; k++) {
for (i = 0; i < i_Temp; i++) {
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
}
}
for (; k < sbr->kx[0] + sbr->m[0]; k++) {
for (i = 0; i < i_Temp; i++) {
X[0][i][k] = Y[0][i + i_f][k][0];
X[1][i][k] = Y[0][i + i_f][k][1];
}
}
for (k = 0; k < sbr->kx[1]; k++) {
for (i = i_Temp; i < i_f; i++) {
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
}
}
for (; k < sbr->kx[1] + sbr->m[1]; k++) {
for (i = i_Temp; i < i_f; i++) {
X[0][i][k] = Y[1][i][k][0];
X[1][i][k] = Y[1][i][k][1];
}
}
return 0;
}
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
* (14496-3 sp04 p217)
*/
static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
SBRData *ch_data, int e_a[2])
{
int e, i, m;
e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev
e_a[1] = -1;
if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
} else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
e_a[1] = ch_data->bs_pointer - 1;
memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
int k;
for (i = 0; i < ilim; i++)
for (m = table[i]; m < table[i + 1]; m++)
sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
// ch_data->bs_num_noise > 1 => 2 noise floors
k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
for (i = 0; i < sbr->n_q; i++)
for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
for (i = 0; i < sbr->n[1]; i++) {
if (ch_data->bs_add_harmonic_flag) {
const unsigned int m_midpoint =
(sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
(e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
}
}
for (i = 0; i < ilim; i++) {
int additional_sinusoid_present = 0;
for (m = table[i]; m < table[i + 1]; m++) {
if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
additional_sinusoid_present = 1;
break;
}
}
memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
(table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
}
}
memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
}
/// Estimation of current envelope (14496-3 sp04 p218)
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
SpectralBandReplication *sbr, SBRData *ch_data)
{
int e, i, m;
if (sbr->bs_interpol_freq) {
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
for (m = 0; m < sbr->m[1]; m++) {
float sum = 0.0f;
for (i = ilb; i < iub; i++) {
sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
}
e_curr[e][m] = sum * recip_env_size;
}
}
} else {
int k, p;
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
float sum = 0.0f;
const int den = env_size * (table[p + 1] - table[p]);
for (k = table[p]; k < table[p + 1]; k++) {
for (i = ilb; i < iub; i++) {
sum += X_high[k][i][0] * X_high[k][i][0] +
X_high[k][i][1] * X_high[k][i][1];
}
}
sum /= den;
for (k = table[p]; k < table[p + 1]; k++) {
e_curr[e][k - sbr->kx[1]] = sum;
}
}
}
}
}
/**
* Calculation of levels of additional HF signal components (14496-3 sp04 p219)
* and Calculation of gain (14496-3 sp04 p219)
*/
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
SBRData *ch_data, const int e_a[2])
{
int e, k, m;
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
int delta = !((e == e_a[1]) || (e == e_a[0]));
for (k = 0; k < sbr->n_lim; k++) {
float gain_boost, gain_max;
float sum[2] = { 0.0f, 0.0f };
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
if (!sbr->s_mapped[e][m]) {
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
((1.0f + sbr->e_curr[e][m]) *
(1.0f + sbr->q_mapped[e][m] * delta)));
} else {
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
((1.0f + sbr->e_curr[e][m]) *
(1.0f + sbr->q_mapped[e][m])));
}
}
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sum[0] += sbr->e_origmapped[e][m];
sum[1] += sbr->e_curr[e][m];
}
gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
gain_max = FFMIN(100000, gain_max);
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
}
sum[0] = sum[1] = 0.0f;
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sum[0] += sbr->e_origmapped[e][m];
sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
+ sbr->s_m[e][m] * sbr->s_m[e][m]
+ (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
}
gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
gain_boost = FFMIN(1.584893192, gain_boost);
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
sbr->gain[e][m] *= gain_boost;
sbr->q_m[e][m] *= gain_boost;
sbr->s_m[e][m] *= gain_boost;
}
}
}
}
/// Assembling HF Signals (14496-3 sp04 p220)
static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
SpectralBandReplication *sbr, SBRData *ch_data,
const int e_a[2])
{
int e, i, j, m;
const int h_SL = 4 * !sbr->bs_smoothing_mode;
const int kx = sbr->kx[1];
const int m_max = sbr->m[1];
static const float h_smooth[5] = {
0.33333333333333,
0.30150283239582,
0.21816949906249,
0.11516383427084,
0.03183050093751,
};
static const int8_t phi[2][4] = {
{ 1, 0, -1, 0}, // real
{ 0, 1, 0, -1}, // imaginary
};
float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
int indexnoise = ch_data->f_indexnoise;
int indexsine = ch_data->f_indexsine;
memcpy(Y[0], Y[1], sizeof(Y[0]));
if (sbr->reset) {
for (i = 0; i < h_SL; i++) {
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
}
} else if (h_SL) {
memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
}
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
}
}
for (e = 0; e < ch_data->bs_num_env[1]; e++) {
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
int phi_sign = (1 - 2*(kx & 1));
if (h_SL && e != e_a[0] && e != e_a[1]) {
for (m = 0; m < m_max; m++) {
const int idx1 = i + h_SL;
float g_filt = 0.0f;
for (j = 0; j <= h_SL; j++)
g_filt += g_temp[idx1 - j][m] * h_smooth[j];
Y[1][i][m + kx][0] =
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
Y[1][i][m + kx][1] =
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
}
} else {
for (m = 0; m < m_max; m++) {
const float g_filt = g_temp[i + h_SL][m];
Y[1][i][m + kx][0] =
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
Y[1][i][m + kx][1] =
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
}
}
if (e != e_a[0] && e != e_a[1]) {
for (m = 0; m < m_max; m++) {
indexnoise = (indexnoise + 1) & 0x1ff;
if (sbr->s_m[e][m]) {
Y[1][i][m + kx][0] +=
sbr->s_m[e][m] * phi[0][indexsine];
Y[1][i][m + kx][1] +=
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
} else {
float q_filt;
if (h_SL) {
const int idx1 = i + h_SL;
q_filt = 0.0f;
for (j = 0; j <= h_SL; j++)
q_filt += q_temp[idx1 - j][m] * h_smooth[j];
} else {
q_filt = q_temp[i][m];
}
Y[1][i][m + kx][0] +=
q_filt * sbr_noise_table[indexnoise][0];
Y[1][i][m + kx][1] +=
q_filt * sbr_noise_table[indexnoise][1];
}
phi_sign = -phi_sign;
}
} else {
indexnoise = (indexnoise + m_max) & 0x1ff;
for (m = 0; m < m_max; m++) {
Y[1][i][m + kx][0] +=
sbr->s_m[e][m] * phi[0][indexsine];
Y[1][i][m + kx][1] +=
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
phi_sign = -phi_sign;
}
}
indexsine = (indexsine + 1) & 3;
}
}
ch_data->f_indexnoise = indexnoise;
ch_data->f_indexsine = indexsine;
}
void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
{
int ch;
if (sbr->start) {
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch);
}
sbr_dequant(sbr, id_aac);
}
}
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
const float* in, float* out)
{
int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
/* decode channel */
sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
(float*)sbr->qmf_filter_scratch,
sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
if (sbr->start) {
sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
sbr_chirp(sbr, &sbr->data[ch]);
sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
sbr->data[ch].bw_array, sbr->data[ch].t_env,
sbr->data[ch].bs_num_env[1]);
// hf_adj
sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
sbr->data[ch].e_a);
}
/* synthesis */
sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
sbr->data[ch].synthesis_filterbank_samples,
&sbr->data[ch].synthesis_filterbank_samples_offset,
downsampled,
ac->add_bias, -1024 * ac->sf_scale);
}
/*
* AAC Spectral Band Replication function declarations
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/aacsbr.h
* AAC Spectral Band Replication function declarations
* @author Robert Swain ( rob opendot cl )
*/
#ifndef AVCODEC_AACSBR_H
#define AVCODEC_AACSBR_H
#include "get_bits.h"
#include "aac.h"
#include "sbr.h"
/** Initialize SBR. */
av_cold void ff_aac_sbr_init(void);
/** Initialize one SBR context. */
av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr);
/** Close one SBR context. */
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr);
/** Decode one SBR element. */
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb, int crc, int cnt, int id_aac);
/** Dequantized all channels in one SBR element. */
void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac);
/** Apply dequantized SBR to a single AAC channel. */
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
const float* in, float* out);
#endif /* AVCODEC_AACSBR_H */
/*
* AAC Spectral Band Replication decoding data
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/aacsbrdata.h
* AAC Spectral Band Replication decoding data
* @author Robert Swain ( rob opendot cl )
*/
#ifndef AVCODEC_AACSBRDATA_H
#define AVCODEC_AACSBRDATA_H
#include <stdint.h>
///< Huffman tables for SBR
static const uint8_t t_huffman_env_1_5dB_bits[121] = {
18, 18, 18, 18, 18, 18, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 17, 18, 16, 17, 18, 17,
16, 16, 16, 16, 15, 14, 14, 13,
13, 12, 11, 10, 9, 8, 7, 6,
5, 4, 3, 2, 2, 3, 4, 5,
6, 7, 8, 9, 10, 12, 13, 14,
14, 15, 16, 17, 16, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19,
};
static const uint32_t t_huffman_env_1_5dB_codes[121] = {
0x3ffd6, 0x3ffd7, 0x3ffd8, 0x3ffd9, 0x3ffda, 0x3ffdb, 0x7ffb8, 0x7ffb9,
0x7ffba, 0x7ffbb, 0x7ffbc, 0x7ffbd, 0x7ffbe, 0x7ffbf, 0x7ffc0, 0x7ffc1,
0x7ffc2, 0x7ffc3, 0x7ffc4, 0x7ffc5, 0x7ffc6, 0x7ffc7, 0x7ffc8, 0x7ffc9,
0x7ffca, 0x7ffcb, 0x7ffcc, 0x7ffcd, 0x7ffce, 0x7ffcf, 0x7ffd0, 0x7ffd1,
0x7ffd2, 0x7ffd3, 0x1ffe6, 0x3ffd4, 0x0fff0, 0x1ffe9, 0x3ffd5, 0x1ffe7,
0x0fff1, 0x0ffec, 0x0ffed, 0x0ffee, 0x07ff4, 0x03ff9, 0x03ff7, 0x01ffa,
0x01ff9, 0x00ffb, 0x007fc, 0x003fc, 0x001fd, 0x000fd, 0x0007d, 0x0003d,
0x0001d, 0x0000d, 0x00005, 0x00001, 0x00000, 0x00004, 0x0000c, 0x0001c,
0x0003c, 0x0007c, 0x000fc, 0x001fc, 0x003fd, 0x00ffa, 0x01ff8, 0x03ff6,
0x03ff8, 0x07ff5, 0x0ffef, 0x1ffe8, 0x0fff2, 0x7ffd4, 0x7ffd5, 0x7ffd6,
0x7ffd7, 0x7ffd8, 0x7ffd9, 0x7ffda, 0x7ffdb, 0x7ffdc, 0x7ffdd, 0x7ffde,
0x7ffdf, 0x7ffe0, 0x7ffe1, 0x7ffe2, 0x7ffe3, 0x7ffe4, 0x7ffe5, 0x7ffe6,
0x7ffe7, 0x7ffe8, 0x7ffe9, 0x7ffea, 0x7ffeb, 0x7ffec, 0x7ffed, 0x7ffee,
0x7ffef, 0x7fff0, 0x7fff1, 0x7fff2, 0x7fff3, 0x7fff4, 0x7fff5, 0x7fff6,
0x7fff7, 0x7fff8, 0x7fff9, 0x7fffa, 0x7fffb, 0x7fffc, 0x7fffd, 0x7fffe,
0x7ffff,
};
static const uint8_t f_huffman_env_1_5dB_bits[121] = {
19, 19, 20, 20, 20, 20, 20, 20,
20, 19, 20, 20, 20, 20, 19, 20,
19, 19, 20, 18, 20, 20, 20, 19,
20, 20, 20, 19, 20, 19, 18, 19,
18, 18, 17, 18, 17, 17, 17, 16,
16, 16, 15, 15, 14, 13, 13, 12,
12, 11, 10, 9, 9, 8, 7, 6,
5, 4, 3, 2, 2, 3, 4, 5,
6, 8, 8, 9, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 16, 16,
17, 17, 18, 18, 18, 18, 18, 18,
18, 20, 19, 20, 20, 20, 20, 20,
20, 19, 20, 20, 20, 20, 19, 20,
18, 20, 20, 19, 19, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20,
};
static const uint32_t f_huffman_env_1_5dB_codes[121] = {
0x7ffe7, 0x7ffe8, 0xfffd2, 0xfffd3, 0xfffd4, 0xfffd5, 0xfffd6, 0xfffd7,
0xfffd8, 0x7ffda, 0xfffd9, 0xfffda, 0xfffdb, 0xfffdc, 0x7ffdb, 0xfffdd,
0x7ffdc, 0x7ffdd, 0xfffde, 0x3ffe4, 0xfffdf, 0xfffe0, 0xfffe1, 0x7ffde,
0xfffe2, 0xfffe3, 0xfffe4, 0x7ffdf, 0xfffe5, 0x7ffe0, 0x3ffe8, 0x7ffe1,
0x3ffe0, 0x3ffe9, 0x1ffef, 0x3ffe5, 0x1ffec, 0x1ffed, 0x1ffee, 0x0fff4,
0x0fff3, 0x0fff0, 0x07ff7, 0x07ff6, 0x03ffa, 0x01ffa, 0x01ff9, 0x00ffa,
0x00ff8, 0x007f9, 0x003fb, 0x001fc, 0x001fa, 0x000fb, 0x0007c, 0x0003c,
0x0001c, 0x0000c, 0x00005, 0x00001, 0x00000, 0x00004, 0x0000d, 0x0001d,
0x0003d, 0x000fa, 0x000fc, 0x001fb, 0x003fa, 0x007f8, 0x007fa, 0x007fb,
0x00ff9, 0x00ffb, 0x01ff8, 0x01ffb, 0x03ff8, 0x03ff9, 0x0fff1, 0x0fff2,
0x1ffea, 0x1ffeb, 0x3ffe1, 0x3ffe2, 0x3ffea, 0x3ffe3, 0x3ffe6, 0x3ffe7,
0x3ffeb, 0xfffe6, 0x7ffe2, 0xfffe7, 0xfffe8, 0xfffe9, 0xfffea, 0xfffeb,
0xfffec, 0x7ffe3, 0xfffed, 0xfffee, 0xfffef, 0xffff0, 0x7ffe4, 0xffff1,
0x3ffec, 0xffff2, 0xffff3, 0x7ffe5, 0x7ffe6, 0xffff4, 0xffff5, 0xffff6,
0xffff7, 0xffff8, 0xffff9, 0xffffa, 0xffffb, 0xffffc, 0xffffd, 0xffffe,
0xfffff,
};
static const uint8_t t_huffman_env_bal_1_5dB_bits[49] = {
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 12, 11, 9, 7, 5, 3,
1, 2, 4, 6, 8, 11, 12, 15,
16, 16, 16, 16, 16, 16, 16, 17,
17, 17, 17, 17, 17, 17, 17, 17,
17,
};
static const uint32_t t_huffman_env_bal_1_5dB_codes[49] = {
0x0ffe4, 0x0ffe5, 0x0ffe6, 0x0ffe7, 0x0ffe8, 0x0ffe9, 0x0ffea, 0x0ffeb,
0x0ffec, 0x0ffed, 0x0ffee, 0x0ffef, 0x0fff0, 0x0fff1, 0x0fff2, 0x0fff3,
0x0fff4, 0x0ffe2, 0x00ffc, 0x007fc, 0x001fe, 0x0007e, 0x0001e, 0x00006,
0x00000, 0x00002, 0x0000e, 0x0003e, 0x000fe, 0x007fd, 0x00ffd, 0x07ff0,
0x0ffe3, 0x0fff5, 0x0fff6, 0x0fff7, 0x0fff8, 0x0fff9, 0x0fffa, 0x1fff6,
0x1fff7, 0x1fff8, 0x1fff9, 0x1fffa, 0x1fffb, 0x1fffc, 0x1fffd, 0x1fffe,
0x1ffff,
};
static const uint8_t f_huffman_env_bal_1_5dB_bits[49] = {
18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 16,
17, 14, 11, 11, 8, 7, 4, 2,
1, 3, 5, 6, 9, 11, 12, 15,
16, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 19,
19,
};
static const uint32_t f_huffman_env_bal_1_5dB_codes[49] = {
0x3ffe2, 0x3ffe3, 0x3ffe4, 0x3ffe5, 0x3ffe6, 0x3ffe7, 0x3ffe8, 0x3ffe9,
0x3ffea, 0x3ffeb, 0x3ffec, 0x3ffed, 0x3ffee, 0x3ffef, 0x3fff0, 0x0fff7,
0x1fff0, 0x03ffc, 0x007fe, 0x007fc, 0x000fe, 0x0007e, 0x0000e, 0x00002,
0x00000, 0x00006, 0x0001e, 0x0003e, 0x001fe, 0x007fd, 0x00ffe, 0x07ffa,
0x0fff6, 0x3fff1, 0x3fff2, 0x3fff3, 0x3fff4, 0x3fff5, 0x3fff6, 0x3fff7,
0x3fff8, 0x3fff9, 0x3fffa, 0x3fffb, 0x3fffc, 0x3fffd, 0x3fffe, 0x7fffe,
0x7ffff,
};
static const uint8_t t_huffman_env_3_0dB_bits[63] = {
18, 18, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 17, 16, 16, 16, 14, 14, 14,
13, 12, 11, 8, 6, 4, 2, 1,
3, 5, 7, 9, 11, 13, 14, 14,
15, 16, 17, 18, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19,
};
static const uint32_t t_huffman_env_3_0dB_codes[63] = {
0x3ffed, 0x3ffee, 0x7ffde, 0x7ffdf, 0x7ffe0, 0x7ffe1, 0x7ffe2, 0x7ffe3,
0x7ffe4, 0x7ffe5, 0x7ffe6, 0x7ffe7, 0x7ffe8, 0x7ffe9, 0x7ffea, 0x7ffeb,
0x7ffec, 0x1fff4, 0x0fff7, 0x0fff9, 0x0fff8, 0x03ffb, 0x03ffa, 0x03ff8,
0x01ffa, 0x00ffc, 0x007fc, 0x000fe, 0x0003e, 0x0000e, 0x00002, 0x00000,
0x00006, 0x0001e, 0x0007e, 0x001fe, 0x007fd, 0x01ffb, 0x03ff9, 0x03ffc,
0x07ffa, 0x0fff6, 0x1fff5, 0x3ffec, 0x7ffed, 0x7ffee, 0x7ffef, 0x7fff0,
0x7fff1, 0x7fff2, 0x7fff3, 0x7fff4, 0x7fff5, 0x7fff6, 0x7fff7, 0x7fff8,
0x7fff9, 0x7fffa, 0x7fffb, 0x7fffc, 0x7fffd, 0x7fffe, 0x7ffff,
};
static const uint8_t f_huffman_env_3_0dB_bits[63] = {
20, 20, 20, 20, 20, 20, 20, 18,
19, 19, 19, 19, 18, 18, 20, 19,
17, 18, 17, 16, 16, 15, 14, 12,
11, 10, 9, 8, 6, 4, 2, 1,
3, 5, 8, 9, 10, 11, 12, 13,
14, 15, 15, 16, 16, 17, 17, 18,
18, 18, 20, 19, 19, 19, 20, 19,
19, 20, 20, 20, 20, 20, 20,
};
static const uint32_t f_huffman_env_3_0dB_codes[63] = {
0xffff0, 0xffff1, 0xffff2, 0xffff3, 0xffff4, 0xffff5, 0xffff6, 0x3fff3,
0x7fff5, 0x7ffee, 0x7ffef, 0x7fff6, 0x3fff4, 0x3fff2, 0xffff7, 0x7fff0,
0x1fff5, 0x3fff0, 0x1fff4, 0x0fff7, 0x0fff6, 0x07ff8, 0x03ffb, 0x00ffd,
0x007fd, 0x003fd, 0x001fd, 0x000fd, 0x0003e, 0x0000e, 0x00002, 0x00000,
0x00006, 0x0001e, 0x000fc, 0x001fc, 0x003fc, 0x007fc, 0x00ffc, 0x01ffc,
0x03ffa, 0x07ff9, 0x07ffa, 0x0fff8, 0x0fff9, 0x1fff6, 0x1fff7, 0x3fff5,
0x3fff6, 0x3fff1, 0xffff8, 0x7fff1, 0x7fff2, 0x7fff3, 0xffff9, 0x7fff7,
0x7fff4, 0xffffa, 0xffffb, 0xffffc, 0xffffd, 0xffffe, 0xfffff,
};
static const uint8_t t_huffman_env_bal_3_0dB_bits[25] = {
13, 13, 13, 13, 13, 13, 13, 12,
8, 7, 4, 3, 1, 2, 5, 6,
9, 13, 13, 13, 13, 13, 13, 14,
14,
};
static const uint16_t t_huffman_env_bal_3_0dB_codes[25] = {
0x1ff2, 0x1ff3, 0x1ff4, 0x1ff5, 0x1ff6, 0x1ff7, 0x1ff8, 0x0ff8,
0x00fe, 0x007e, 0x000e, 0x0006, 0x0000, 0x0002, 0x001e, 0x003e,
0x01fe, 0x1ff9, 0x1ffa, 0x1ffb, 0x1ffc, 0x1ffd, 0x1ffe, 0x3ffe,
0x3fff,
};
static const uint8_t f_huffman_env_bal_3_0dB_bits[25] = {
13, 13, 13, 13, 13, 14, 14, 11,
8, 7, 4, 2, 1, 3, 5, 6,
9, 12, 13, 14, 14, 14, 14, 14,
14,
};
static const uint16_t f_huffman_env_bal_3_0dB_codes[25] = {
0x1ff7, 0x1ff8, 0x1ff9, 0x1ffa, 0x1ffb, 0x3ff8, 0x3ff9, 0x07fc,
0x00fe, 0x007e, 0x000e, 0x0002, 0x0000, 0x0006, 0x001e, 0x003e,
0x01fe, 0x0ffa, 0x1ff6, 0x3ffa, 0x3ffb, 0x3ffc, 0x3ffd, 0x3ffe,
0x3fff,
};
static const uint8_t t_huffman_noise_3_0dB_bits[63] = {
13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 11, 8, 6, 4, 3, 1,
2, 5, 8, 10, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 14, 14,
};
static const uint16_t t_huffman_noise_3_0dB_codes[63] = {
0x1fce, 0x1fcf, 0x1fd0, 0x1fd1, 0x1fd2, 0x1fd3, 0x1fd4, 0x1fd5,
0x1fd6, 0x1fd7, 0x1fd8, 0x1fd9, 0x1fda, 0x1fdb, 0x1fdc, 0x1fdd,
0x1fde, 0x1fdf, 0x1fe0, 0x1fe1, 0x1fe2, 0x1fe3, 0x1fe4, 0x1fe5,
0x1fe6, 0x1fe7, 0x07f2, 0x00fd, 0x003e, 0x000e, 0x0006, 0x0000,
0x0002, 0x001e, 0x00fc, 0x03f8, 0x1fcc, 0x1fe8, 0x1fe9, 0x1fea,
0x1feb, 0x1fec, 0x1fcd, 0x1fed, 0x1fee, 0x1fef, 0x1ff0, 0x1ff1,
0x1ff2, 0x1ff3, 0x1ff4, 0x1ff5, 0x1ff6, 0x1ff7, 0x1ff8, 0x1ff9,
0x1ffa, 0x1ffb, 0x1ffc, 0x1ffd, 0x1ffe, 0x3ffe, 0x3fff,
};
static const uint8_t t_huffman_noise_bal_3_0dB_bits[25] = {
8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 5, 2, 1, 3, 6, 8,
8, 8, 8, 8, 8, 8, 8, 8,
8,
};
static const uint8_t t_huffman_noise_bal_3_0dB_codes[25] = {
0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3,
0xf4, 0xf5, 0x1c, 0x02, 0x00, 0x06, 0x3a, 0xf6,
0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe,
0xff,
};
static const int8_t sbr_offset[6][16] = {
{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}, // fs_sbr = 16000 Hz
{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13}, // fs_sbr = 22050 Hz
{-5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16}, // fs_sbr = 24000 Hz
{-6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16}, // fs_sbr = 32000 Hz
{-4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20}, // 44100 Hz <= fs_sbr <= 64000 Hz
{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24}, // 64000 Hz < fs_sbr
};
///< window coefficients for analysis/synthesis QMF banks
static DECLARE_ALIGNED(16, float, sbr_qmf_window_ds)[320];
static DECLARE_ALIGNED(16, float, sbr_qmf_window_us)[640] = {
0.0000000000, -0.0005525286, -0.0005617692, -0.0004947518,
-0.0004875227, -0.0004893791, -0.0005040714, -0.0005226564,
-0.0005466565, -0.0005677802, -0.0005870930, -0.0006132747,
-0.0006312493, -0.0006540333, -0.0006777690, -0.0006941614,
-0.0007157736, -0.0007255043, -0.0007440941, -0.0007490598,
-0.0007681371, -0.0007724848, -0.0007834332, -0.0007779869,
-0.0007803664, -0.0007801449, -0.0007757977, -0.0007630793,
-0.0007530001, -0.0007319357, -0.0007215391, -0.0006917937,
-0.0006650415, -0.0006341594, -0.0005946118, -0.0005564576,
-0.0005145572, -0.0004606325, -0.0004095121, -0.0003501175,
-0.0002896981, -0.0002098337, -0.0001446380, -0.0000617334,
0.0000134949, 0.0001094383, 0.0002043017, 0.0002949531,
0.0004026540, 0.0005107388, 0.0006239376, 0.0007458025,
0.0008608443, 0.0009885988, 0.0011250155, 0.0012577884,
0.0013902494, 0.0015443219, 0.0016868083, 0.0018348265,
0.0019841140, 0.0021461583, 0.0023017254, 0.0024625616,
0.0026201758, 0.0027870464, 0.0029469447, 0.0031125420,
0.0032739613, 0.0034418874, 0.0036008268, 0.0037603922,
0.0039207432, 0.0040819753, 0.0042264269, 0.0043730719,
0.0045209852, 0.0046606460, 0.0047932560, 0.0049137603,
0.0050393022, 0.0051407353, 0.0052461166, 0.0053471681,
0.0054196775, 0.0054876040, 0.0055475714, 0.0055938023,
0.0056220643, 0.0056455196, 0.0056389199, 0.0056266114,
0.0055917128, 0.0055404363, 0.0054753783, 0.0053838975,
0.0052715758, 0.0051382275, 0.0049839687, 0.0048109469,
0.0046039530, 0.0043801861, 0.0041251642, 0.0038456408,
0.0035401246, 0.0032091885, 0.0028446757, 0.0024508540,
0.0020274176, 0.0015784682, 0.0010902329, 0.0005832264,
0.0000276045, -0.0005464280, -0.0011568135, -0.0018039472,
-0.0024826723, -0.0031933778, -0.0039401124, -0.0047222596,
-0.0055337211, -0.0063792293, -0.0072615816, -0.0081798233,
-0.0091325329, -0.0101150215, -0.0111315548, -0.0121849995,
0.0132718220, 0.0143904666, 0.0155405553, 0.0167324712,
0.0179433381, 0.0191872431, 0.0204531793, 0.0217467550,
0.0230680169, 0.0244160992, 0.0257875847, 0.0271859429,
0.0286072173, 0.0300502657, 0.0315017608, 0.0329754081,
0.0344620948, 0.0359697560, 0.0374812850, 0.0390053679,
0.0405349170, 0.0420649094, 0.0436097542, 0.0451488405,
0.0466843027, 0.0482165720, 0.0497385755, 0.0512556155,
0.0527630746, 0.0542452768, 0.0557173648, 0.0571616450,
0.0585915683, 0.0599837480, 0.0613455171, 0.0626857808,
0.0639715898, 0.0652247106, 0.0664367512, 0.0676075985,
0.0687043828, 0.0697630244, 0.0707628710, 0.0717002673,
0.0725682583, 0.0733620255, 0.0741003642, 0.0747452558,
0.0753137336, 0.0758008358, 0.0761992479, 0.0764992170,
0.0767093490, 0.0768173975, 0.0768230011, 0.0767204924,
0.0765050718, 0.0761748321, 0.0757305756, 0.0751576255,
0.0744664394, 0.0736406005, 0.0726774642, 0.0715826364,
0.0703533073, 0.0689664013, 0.0674525021, 0.0657690668,
0.0639444805, 0.0619602779, 0.0598166570, 0.0575152691,
0.0550460034, 0.0524093821, 0.0495978676, 0.0466303305,
0.0434768782, 0.0401458278, 0.0366418116, 0.0329583930,
0.0290824006, 0.0250307561, 0.0207997072, 0.0163701258,
0.0117623832, 0.0069636862, 0.0019765601, -0.0032086896,
-0.0085711749, -0.0141288827, -0.0198834129, -0.0258227288,
-0.0319531274, -0.0382776572, -0.0447806821, -0.0514804176,
-0.0583705326, -0.0654409853, -0.0726943300, -0.0801372934,
-0.0877547536, -0.0955533352, -0.1035329531, -0.1116826931,
-0.1200077984, -0.1285002850, -0.1371551761, -0.1459766491,
-0.1549607071, -0.1640958855, -0.1733808172, -0.1828172548,
-0.1923966745, -0.2021250176, -0.2119735853, -0.2219652696,
-0.2320690870, -0.2423016884, -0.2526480309, -0.2631053299,
-0.2736634040, -0.2843214189, -0.2950716717, -0.3059098575,
-0.3168278913, -0.3278113727, -0.3388722693, -0.3499914122,
0.3611589903, 0.3723795546, 0.3836350013, 0.3949211761,
0.4062317676, 0.4175696896, 0.4289119920, 0.4402553754,
0.4515996535, 0.4629308085, 0.4742453214, 0.4855253091,
0.4967708254, 0.5079817500, 0.5191234970, 0.5302240895,
0.5412553448, 0.5522051258, 0.5630789140, 0.5738524131,
0.5845403235, 0.5951123086, 0.6055783538, 0.6159109932,
0.6261242695, 0.6361980107, 0.6461269695, 0.6559016302,
0.6655139880, 0.6749663190, 0.6842353293, 0.6933282376,
0.7022388719, 0.7109410426, 0.7194462634, 0.7277448900,
0.7358211758, 0.7436827863, 0.7513137456, 0.7587080760,
0.7658674865, 0.7727780881, 0.7794287519, 0.7858353120,
0.7919735841, 0.7978466413, 0.8034485751, 0.8087695004,
0.8138191270, 0.8185776004, 0.8230419890, 0.8272275347,
0.8311038457, 0.8346937361, 0.8379717337, 0.8409541392,
0.8436238281, 0.8459818469, 0.8480315777, 0.8497805198,
0.8511971524, 0.8523047035, 0.8531020949, 0.8535720573,
0.8537385600,
};
static const float sbr_noise_table[512][2] = {
{-0.99948153278296, -0.59483417516607}, { 0.97113454393991, -0.67528515225647},
{ 0.14130051758487, -0.95090983575689}, {-0.47005496701697, -0.37340549728647},
{ 0.80705063769351, 0.29653668284408}, {-0.38981478896926, 0.89572605717087},
{-0.01053049862020, -0.66959058036166}, {-0.91266367957293, -0.11522938140034},
{ 0.54840422910309, 0.75221367176302}, { 0.40009252867955, -0.98929400334421},
{-0.99867974711855, -0.88147068645358}, {-0.95531076805040, 0.90908757154593},
{-0.45725933317144, -0.56716323646760}, {-0.72929675029275, -0.98008272727324},
{ 0.75622801399036, 0.20950329995549}, { 0.07069442601050, -0.78247898470706},
{ 0.74496252926055, -0.91169004445807}, {-0.96440182703856, -0.94739918296622},
{ 0.30424629369539, -0.49438267012479}, { 0.66565033746925, 0.64652935542491},
{ 0.91697008020594, 0.17514097332009}, {-0.70774918760427, 0.52548653416543},
{-0.70051415345560, -0.45340028808763}, {-0.99496513054797, -0.90071908066973},
{ 0.98164490790123, -0.77463155528697}, {-0.54671580548181, -0.02570928536004},
{-0.01689629065389, 0.00287506445732}, {-0.86110349531986, 0.42548583726477},
{-0.98892980586032, -0.87881132267556}, { 0.51756627678691, 0.66926784710139},
{-0.99635026409640, -0.58107730574765}, {-0.99969370862163, 0.98369989360250},
{ 0.55266258627194, 0.59449057465591}, { 0.34581177741673, 0.94879421061866},
{ 0.62664209577999, -0.74402970906471}, {-0.77149701404973, -0.33883658042801},
{-0.91592244254432, 0.03687901376713}, {-0.76285492357887, -0.91371867919124},
{ 0.79788337195331, -0.93180971199849}, { 0.54473080610200, -0.11919206037186},
{-0.85639281671058, 0.42429854760451}, {-0.92882402971423, 0.27871809078609},
{-0.11708371046774, -0.99800843444966}, { 0.21356749817493, -0.90716295627033},
{-0.76191692573909, 0.99768118356265}, { 0.98111043100884, -0.95854459734407},
{-0.85913269895572, 0.95766566168880}, {-0.93307242253692, 0.49431757696466},
{ 0.30485754879632, -0.70540034357529}, { 0.85289650925190, 0.46766131791044},
{ 0.91328082618125, -0.99839597361769}, {-0.05890199924154, 0.70741827819497},
{ 0.28398686150148, 0.34633555702188}, { 0.95258164539612, -0.54893416026939},
{-0.78566324168507, -0.75568541079691}, {-0.95789495447877, -0.20423194696966},
{ 0.82411158711197, 0.96654618432562}, {-0.65185446735885, -0.88734990773289},
{-0.93643603134666, 0.99870790442385}, { 0.91427159529618, -0.98290505544444},
{-0.70395684036886, 0.58796798221039}, { 0.00563771969365, 0.61768196727244},
{ 0.89065051931895, 0.52783352697585}, {-0.68683707712762, 0.80806944710339},
{ 0.72165342518718, -0.69259857349564}, {-0.62928247730667, 0.13627037407335},
{ 0.29938434065514, -0.46051329682246}, {-0.91781958879280, -0.74012716684186},
{ 0.99298717043688, 0.40816610075661}, { 0.82368298622748, -0.74036047190173},
{-0.98512833386833, -0.99972330709594}, {-0.95915368242257, -0.99237800466040},
{-0.21411126572790, -0.93424819052545}, {-0.68821476106884, -0.26892306315457},
{ 0.91851997982317, 0.09358228901785}, {-0.96062769559127, 0.36099095133739},
{ 0.51646184922287, -0.71373332873917}, { 0.61130721139669, 0.46950141175917},
{ 0.47336129371299, -0.27333178296162}, { 0.90998308703519, 0.96715662938132},
{ 0.44844799194357, 0.99211574628306}, { 0.66614891079092, 0.96590176169121},
{ 0.74922239129237, -0.89879858826087}, {-0.99571588506485, 0.52785521494349},
{ 0.97401082477563, -0.16855870075190}, { 0.72683747733879, -0.48060774432251},
{ 0.95432193457128, 0.68849603408441}, {-0.72962208425191, -0.76608443420917},
{-0.85359479233537, 0.88738125901579}, {-0.81412430338535, -0.97480768049637},
{-0.87930772356786, 0.74748307690436}, {-0.71573331064977, -0.98570608178923},
{ 0.83524300028228, 0.83702537075163}, {-0.48086065601423, -0.98848504923531},
{ 0.97139128574778, 0.80093621198236}, { 0.51992825347895, 0.80247631400510},
{-0.00848591195325, -0.76670128000486}, {-0.70294374303036, 0.55359910445577},
{-0.95894428168140, -0.43265504344783}, { 0.97079252950321, 0.09325857238682},
{-0.92404293670797, 0.85507704027855}, {-0.69506469500450, 0.98633412625459},
{ 0.26559203620024, 0.73314307966524}, { 0.28038443336943, 0.14537913654427},
{-0.74138124825523, 0.99310339807762}, {-0.01752795995444, -0.82616635284178},
{-0.55126773094930, -0.98898543862153}, { 0.97960898850996, -0.94021446752851},
{-0.99196309146936, 0.67019017358456}, {-0.67684928085260, 0.12631491649378},
{ 0.09140039465500, -0.20537731453108}, {-0.71658965751996, -0.97788200391224},
{ 0.81014640078925, 0.53722648362443}, { 0.40616991671205, -0.26469008598449},
{-0.67680188682972, 0.94502052337695}, { 0.86849774348749, -0.18333598647899},
{-0.99500381284851, -0.02634122068550}, { 0.84329189340667, 0.10406957462213},
{-0.09215968531446, 0.69540012101253}, { 0.99956173327206, -0.12358542001404},
{-0.79732779473535, -0.91582524736159}, { 0.96349973642406, 0.96640458041000},
{-0.79942778496547, 0.64323902822857}, {-0.11566039853896, 0.28587846253726},
{-0.39922954514662, 0.94129601616966}, { 0.99089197565987, -0.92062625581587},
{ 0.28631285179909, -0.91035047143603}, {-0.83302725605608, -0.67330410892084},
{ 0.95404443402072, 0.49162765398743}, {-0.06449863579434, 0.03250560813135},
{-0.99575054486311, 0.42389784469507}, {-0.65501142790847, 0.82546114655624},
{-0.81254441908887, -0.51627234660629}, {-0.99646369485481, 0.84490533520752},
{ 0.00287840603348, 0.64768261158166}, { 0.70176989408455, -0.20453028573322},
{ 0.96361882270190, 0.40706967140989}, {-0.68883758192426, 0.91338958840772},
{-0.34875585502238, 0.71472290693300}, { 0.91980081243087, 0.66507455644919},
{-0.99009048343881, 0.85868021604848}, { 0.68865791458395, 0.55660316809678},
{-0.99484402129368, -0.20052559254934}, { 0.94214511408023, -0.99696425367461},
{-0.67414626793544, 0.49548221180078}, {-0.47339353684664, -0.85904328834047},
{ 0.14323651387360, -0.94145598222488}, {-0.29268293575672, 0.05759224927952},
{ 0.43793861458754, -0.78904969892724}, {-0.36345126374441, 0.64874435357162},
{-0.08750604656825, 0.97686944362527}, {-0.96495267812511, -0.53960305946511},
{ 0.55526940659947, 0.78891523734774}, { 0.73538215752630, 0.96452072373404},
{-0.30889773919437, -0.80664389776860}, { 0.03574995626194, -0.97325616900959},
{ 0.98720684660488, 0.48409133691962}, {-0.81689296271203, -0.90827703628298},
{ 0.67866860118215, 0.81284503870856}, {-0.15808569732583, 0.85279555024382},
{ 0.80723395114371, -0.24717418514605}, { 0.47788757329038, -0.46333147839295},
{ 0.96367554763201, 0.38486749303242}, {-0.99143875716818, -0.24945277239809},
{ 0.83081876925833, -0.94780851414763}, {-0.58753191905341, 0.01290772389163},
{ 0.95538108220960, -0.85557052096538}, {-0.96490920476211, -0.64020970923102},
{-0.97327101028521, 0.12378128133110}, { 0.91400366022124, 0.57972471346930},
{-0.99925837363824, 0.71084847864067}, {-0.86875903507313, -0.20291699203564},
{-0.26240034795124, -0.68264554369108}, {-0.24664412953388, -0.87642273115183},
{ 0.02416275806869, 0.27192914288905}, { 0.82068619590515, -0.85087787994476},
{ 0.88547373760759, -0.89636802901469}, {-0.18173078152226, -0.26152145156800},
{ 0.09355476558534, 0.54845123045604}, {-0.54668414224090, 0.95980774020221},
{ 0.37050990604091, -0.59910140383171}, {-0.70373594262891, 0.91227665827081},
{-0.34600785879594, -0.99441426144200}, {-0.68774481731008, -0.30238837956299},
{-0.26843291251234, 0.83115668004362}, { 0.49072334613242, -0.45359708737775},
{ 0.38975993093975, 0.95515358099121}, {-0.97757125224150, 0.05305894580606},
{-0.17325552859616, -0.92770672250494}, { 0.99948035025744, 0.58285545563426},
{-0.64946246527458, 0.68645507104960}, {-0.12016920576437, -0.57147322153312},
{-0.58947456517751, -0.34847132454388}, {-0.41815140454465, 0.16276422358861},
{ 0.99885650204884, 0.11136095490444}, {-0.56649614128386, -0.90494866361587},
{ 0.94138021032330, 0.35281916733018}, {-0.75725076534641, 0.53650549640587},
{ 0.20541973692630, -0.94435144369918}, { 0.99980371023351, 0.79835913565599},
{ 0.29078277605775, 0.35393777921520}, {-0.62858772103030, 0.38765693387102},
{ 0.43440904467688, -0.98546330463232}, {-0.98298583762390, 0.21021524625209},
{ 0.19513029146934, -0.94239832251867}, {-0.95476662400101, 0.98364554179143},
{ 0.93379635304810, -0.70881994583682}, {-0.85235410573336, -0.08342347966410},
{-0.86425093011245, -0.45795025029466}, { 0.38879779059045, 0.97274429344593},
{ 0.92045124735495, -0.62433652524220}, { 0.89162532251878, 0.54950955570563},
{-0.36834336949252, 0.96458298020975}, { 0.93891760988045, -0.89968353740388},
{ 0.99267657565094, -0.03757034316958}, {-0.94063471614176, 0.41332338538963},
{ 0.99740224117019, -0.16830494996370}, {-0.35899413170555, -0.46633226649613},
{ 0.05237237274947, -0.25640361602661}, { 0.36703583957424, -0.38653265641875},
{ 0.91653180367913, -0.30587628726597}, { 0.69000803499316, 0.90952171386132},
{-0.38658751133527, 0.99501571208985}, {-0.29250814029851, 0.37444994344615},
{-0.60182204677608, 0.86779651036123}, {-0.97418588163217, 0.96468523666475},
{ 0.88461574003963, 0.57508405276414}, { 0.05198933055162, 0.21269661669964},
{-0.53499621979720, 0.97241553731237}, {-0.49429560226497, 0.98183865291903},
{-0.98935142339139, -0.40249159006933}, {-0.98081380091130, -0.72856895534041},
{-0.27338148835532, 0.99950922447209}, { 0.06310802338302, -0.54539587529618},
{-0.20461677199539, -0.14209977628489}, { 0.66223843141647, 0.72528579940326},
{-0.84764345483665, 0.02372316801261}, {-0.89039863483811, 0.88866581484602},
{ 0.95903308477986, 0.76744927173873}, { 0.73504123909879, -0.03747203173192},
{-0.31744434966056, -0.36834111883652}, {-0.34110827591623, 0.40211222807691},
{ 0.47803883714199, -0.39423219786288}, { 0.98299195879514, 0.01989791390047},
{-0.30963073129751, -0.18076720599336}, { 0.99992588229018, -0.26281872094289},
{-0.93149731080767, -0.98313162570490}, { 0.99923472302773, -0.80142993767554},
{-0.26024169633417, -0.75999759855752}, {-0.35712514743563, 0.19298963768574},
{-0.99899084509530, 0.74645156992493}, { 0.86557171579452, 0.55593866696299},
{ 0.33408042438752, 0.86185953874709}, { 0.99010736374716, 0.04602397576623},
{-0.66694269691195, -0.91643611810148}, { 0.64016792079480, 0.15649530836856},
{ 0.99570534804836, 0.45844586038111}, {-0.63431466947340, 0.21079116459234},
{-0.07706847005931, -0.89581437101329}, { 0.98590090577724, 0.88241721133981},
{ 0.80099335254678, -0.36851896710853}, { 0.78368131392666, 0.45506999802597},
{ 0.08707806671691, 0.80938994918745}, {-0.86811883080712, 0.39347308654705},
{-0.39466529740375, -0.66809432114456}, { 0.97875325649683, -0.72467840967746},
{-0.95038560288864, 0.89563219587625}, { 0.17005239424212, 0.54683053962658},
{-0.76910792026848, -0.96226617549298}, { 0.99743281016846, 0.42697157037567},
{ 0.95437383549973, 0.97002324109952}, { 0.99578905365569, -0.54106826257356},
{ 0.28058259829990, -0.85361420634036}, { 0.85256524470573, -0.64567607735589},
{-0.50608540105128, -0.65846015480300}, {-0.97210735183243, -0.23095213067791},
{ 0.95424048234441, -0.99240147091219}, {-0.96926570524023, 0.73775654896574},
{ 0.30872163214726, 0.41514960556126}, {-0.24523839572639, 0.63206633394807},
{-0.33813265086024, -0.38661779441897}, {-0.05826828420146, -0.06940774188029},
{-0.22898461455054, 0.97054853316316}, {-0.18509915019881, 0.47565762892084},
{-0.10488238045009, -0.87769947402394}, {-0.71886586182037, 0.78030982480538},
{ 0.99793873738654, 0.90041310491497}, { 0.57563307626120, -0.91034337352097},
{ 0.28909646383717, 0.96307783970534}, { 0.42188998312520, 0.48148651230437},
{ 0.93335049681047, -0.43537023883588}, {-0.97087374418267, 0.86636445711364},
{ 0.36722871286923, 0.65291654172961}, {-0.81093025665696, 0.08778370229363},
{-0.26240603062237, -0.92774095379098}, { 0.83996497984604, 0.55839849139647},
{-0.99909615720225, -0.96024605713970}, { 0.74649464155061, 0.12144893606462},
{-0.74774595569805, -0.26898062008959}, { 0.95781667469567, -0.79047927052628},
{ 0.95472308713099, -0.08588776019550}, { 0.48708332746299, 0.99999041579432},
{ 0.46332038247497, 0.10964126185063}, {-0.76497004940162, 0.89210929242238},
{ 0.57397389364339, 0.35289703373760}, { 0.75374316974495, 0.96705214651335},
{-0.59174397685714, -0.89405370422752}, { 0.75087906691890, -0.29612672982396},
{-0.98607857336230, 0.25034911730023}, {-0.40761056640505, -0.90045573444695},
{ 0.66929266740477, 0.98629493401748}, {-0.97463695257310, -0.00190223301301},
{ 0.90145509409859, 0.99781390365446}, {-0.87259289048043, 0.99233587353666},
{-0.91529461447692, -0.15698707534206}, {-0.03305738840705, -0.37205262859764},
{ 0.07223051368337, -0.88805001733626}, { 0.99498012188353, 0.97094358113387},
{-0.74904939500519, 0.99985483641521}, { 0.04585228574211, 0.99812337444082},
{-0.89054954257993, -0.31791913188064}, {-0.83782144651251, 0.97637632547466},
{ 0.33454804933804, -0.86231516800408}, {-0.99707579362824, 0.93237990079441},
{-0.22827527843994, 0.18874759397997}, { 0.67248046289143, -0.03646211390569},
{-0.05146538187944, -0.92599700120679}, { 0.99947295749905, 0.93625229707912},
{ 0.66951124390363, 0.98905825623893}, {-0.99602956559179, -0.44654715757688},
{ 0.82104905483590, 0.99540741724928}, { 0.99186510988782, 0.72023001312947},
{-0.65284592392918, 0.52186723253637}, { 0.93885443798188, -0.74895312615259},
{ 0.96735248738388, 0.90891816978629}, {-0.22225968841114, 0.57124029781228},
{-0.44132783753414, -0.92688840659280}, {-0.85694974219574, 0.88844532719844},
{ 0.91783042091762, -0.46356892383970}, { 0.72556974415690, -0.99899555770747},
{-0.99711581834508, 0.58211560180426}, { 0.77638976371966, 0.94321834873819},
{ 0.07717324253925, 0.58638399856595}, {-0.56049829194163, 0.82522301569036},
{ 0.98398893639988, 0.39467440420569}, { 0.47546946844938, 0.68613044836811},
{ 0.65675089314631, 0.18331637134880}, { 0.03273375457980, -0.74933109564108},
{-0.38684144784738, 0.51337349030406}, {-0.97346267944545, -0.96549364384098},
{-0.53282156061942, -0.91423265091354}, { 0.99817310731176, 0.61133572482148},
{-0.50254500772635, -0.88829338134294}, { 0.01995873238855, 0.85223515096765},
{ 0.99930381973804, 0.94578896296649}, { 0.82907767600783, -0.06323442598128},
{-0.58660709669728, 0.96840773806582}, {-0.17573736667267, -0.48166920859485},
{ 0.83434292401346, -0.13023450646997}, { 0.05946491307025, 0.20511047074866},
{ 0.81505484574602, -0.94685947861369}, {-0.44976380954860, 0.40894572671545},
{-0.89746474625671, 0.99846578838537}, { 0.39677256130792, -0.74854668609359},
{-0.07588948563079, 0.74096214084170}, { 0.76343198951445, 0.41746629422634},
{-0.74490104699626, 0.94725911744610}, { 0.64880119792759, 0.41336660830571},
{ 0.62319537462542, -0.93098313552599}, { 0.42215817594807, -0.07712787385208},
{ 0.02704554141885, -0.05417518053666}, { 0.80001773566818, 0.91542195141039},
{-0.79351832348816, -0.36208897989136}, { 0.63872359151636, 0.08128252493444},
{ 0.52890520960295, 0.60048872455592}, { 0.74238552914587, 0.04491915291044},
{ 0.99096131449250, -0.19451182854402}, {-0.80412329643109, -0.88513818199457},
{-0.64612616129736, 0.72198674804544}, { 0.11657770663191, -0.83662833815041},
{-0.95053182488101, -0.96939905138082}, {-0.62228872928622, 0.82767262846661},
{ 0.03004475787316, -0.99738896333384}, {-0.97987214341034, 0.36526129686425},
{-0.99986980746200, -0.36021610299715}, { 0.89110648599879, -0.97894250343044},
{ 0.10407960510582, 0.77357793811619}, { 0.95964737821728, -0.35435818285502},
{ 0.50843233159162, 0.96107691266205}, { 0.17006334670615, -0.76854025314829},
{ 0.25872675063360, 0.99893303933816}, {-0.01115998681937, 0.98496019742444},
{-0.79598702973261, 0.97138411318894}, {-0.99264708948101, -0.99542822402536},
{-0.99829663752818, 0.01877138824311}, {-0.70801016548184, 0.33680685948117},
{-0.70467057786826, 0.93272777501857}, { 0.99846021905254, -0.98725746254433},
{-0.63364968534650, -0.16473594423746}, {-0.16258217500792, -0.95939125400802},
{-0.43645594360633, -0.94805030113284}, {-0.99848471702976, 0.96245166923809},
{-0.16796458968998, -0.98987511890470}, {-0.87979225745213, -0.71725725041680},
{ 0.44183099021786, -0.93568974498761}, { 0.93310180125532, -0.99913308068246},
{-0.93941931782002, -0.56409379640356}, {-0.88590003188677, 0.47624600491382},
{ 0.99971463703691, -0.83889954253462}, {-0.75376385639978, 0.00814643438625},
{ 0.93887685615875, -0.11284528204636}, { 0.85126435782309, 0.52349251543547},
{ 0.39701421446381, 0.81779634174316}, {-0.37024464187437, -0.87071656222959},
{-0.36024828242896, 0.34655735648287}, {-0.93388812549209, -0.84476541096429},
{-0.65298804552119, -0.18439575450921}, { 0.11960319006843, 0.99899346780168},
{ 0.94292565553160, 0.83163906518293}, { 0.75081145286948, -0.35533223142265},
{ 0.56721979748394, -0.24076836414499}, { 0.46857766746029, -0.30140233457198},
{ 0.97312313923635, -0.99548191630031}, {-0.38299976567017, 0.98516909715427},
{ 0.41025800019463, 0.02116736935734}, { 0.09638062008048, 0.04411984381457},
{-0.85283249275397, 0.91475563922421}, { 0.88866808958124, -0.99735267083226},
{-0.48202429536989, -0.96805608884164}, { 0.27572582416567, 0.58634753335832},
{-0.65889129659168, 0.58835634138583}, { 0.98838086953732, 0.99994349600236},
{-0.20651349620689, 0.54593044066355}, {-0.62126416356920, -0.59893681700392},
{ 0.20320105410437, -0.86879180355289}, {-0.97790548600584, 0.96290806999242},
{ 0.11112534735126, 0.21484763313301}, {-0.41368337314182, 0.28216837680365},
{ 0.24133038992960, 0.51294362630238}, {-0.66393410674885, -0.08249679629081},
{-0.53697829178752, -0.97649903936228}, {-0.97224737889348, 0.22081333579837},
{ 0.87392477144549, -0.12796173740361}, { 0.19050361015753, 0.01602615387195},
{-0.46353441212724, -0.95249041539006}, {-0.07064096339021, -0.94479803205886},
{-0.92444085484466, -0.10457590187436}, {-0.83822593578728, -0.01695043208885},
{ 0.75214681811150, -0.99955681042665}, {-0.42102998829339, 0.99720941999394},
{-0.72094786237696, -0.35008961934255}, { 0.78843311019251, 0.52851398958271},
{ 0.97394027897442, -0.26695944086561}, { 0.99206463477946, -0.57010120849429},
{ 0.76789609461795, -0.76519356730966}, {-0.82002421836409, -0.73530179553767},
{ 0.81924990025724, 0.99698425250579}, {-0.26719850873357, 0.68903369776193},
{-0.43311260380975, 0.85321815947490}, { 0.99194979673836, 0.91876249766422},
{-0.80692001248487, -0.32627540663214}, { 0.43080003649976, -0.21919095636638},
{ 0.67709491937357, -0.95478075822906}, { 0.56151770568316, -0.70693811747778},
{ 0.10831862810749, -0.08628837174592}, { 0.91229417540436, -0.65987351408410},
{-0.48972893932274, 0.56289246362686}, {-0.89033658689697, -0.71656563987082},
{ 0.65269447475094, 0.65916004833932}, { 0.67439478141121, -0.81684380846796},
{-0.47770832416973, -0.16789556203025}, {-0.99715979260878, -0.93565784007648},
{-0.90889593602546, 0.62034397054380}, {-0.06618622548177, -0.23812217221359},
{ 0.99430266919728, 0.18812555317553}, { 0.97686402381843, -0.28664534366620},
{ 0.94813650221268, -0.97506640027128}, {-0.95434497492853, -0.79607978501983},
{-0.49104783137150, 0.32895214359663}, { 0.99881175120751, 0.88993983831354},
{ 0.50449166760303, -0.85995072408434}, { 0.47162891065108, -0.18680204049569},
{-0.62081581361840, 0.75000676218956}, {-0.43867015250812, 0.99998069244322},
{ 0.98630563232075, -0.53578899600662}, {-0.61510362277374, -0.89515019899997},
{-0.03841517601843, -0.69888815681179}, {-0.30102157304644, -0.07667808922205},
{ 0.41881284182683, 0.02188098922282}, {-0.86135454941237, 0.98947480909359},
{ 0.67226861393788, -0.13494389011014}, {-0.70737398842068, -0.76547349325992},
{ 0.94044946687963, 0.09026201157416}, {-0.82386352534327, 0.08924768823676},
{-0.32070666698656, 0.50143421908753}, { 0.57593163224487, -0.98966422921509},
{-0.36326018419965, 0.07440243123228}, { 0.99979044674350, -0.14130287347405},
{-0.92366023326932, -0.97979298068180}, {-0.44607178518598, -0.54233252016394},
{ 0.44226800932956, 0.71326756742752}, { 0.03671907158312, 0.63606389366675},
{ 0.52175424682195, -0.85396826735705}, {-0.94701139690956, -0.01826348194255},
{-0.98759606946049, 0.82288714303073}, { 0.87434794743625, 0.89399495655433},
{-0.93412041758744, 0.41374052024363}, { 0.96063943315511, 0.93116709541280},
{ 0.97534253457837, 0.86150930812689}, { 0.99642466504163, 0.70190043427512},
{-0.94705089665984, -0.29580042814306}, { 0.91599807087376, -0.98147830385781},
};
#endif /* AVCODEC_AACSBRDATA_H */
......@@ -30,7 +30,7 @@
#include "libavutil/avutil.h"
#define LIBAVCODEC_VERSION_MAJOR 52
#define LIBAVCODEC_VERSION_MINOR 56
#define LIBAVCODEC_VERSION_MINOR 57
#define LIBAVCODEC_VERSION_MICRO 0
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
......
......@@ -57,7 +57,7 @@ enum AudioObjectType {
AOT_AAC_LC, ///< Y Low Complexity
AOT_AAC_SSR, ///< N (code in SoC repo) Scalable Sample Rate
AOT_AAC_LTP, ///< N (code in SoC repo) Long Term Prediction
AOT_SBR, ///< N (in progress) Spectral Band Replication
AOT_SBR, ///< Y Spectral Band Replication
AOT_AAC_SCALABLE, ///< N Scalable
AOT_TWINVQ, ///< N Twin Vector Quantizer
AOT_CELP, ///< N Code Excited Linear Prediction
......
/*
* Spectral Band Replication definitions and structures
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/sbr.h
* Spectral Band Replication definitions and structures
* @author Robert Swain ( rob opendot cl )
*/
#ifndef AVCODEC_SBR_H
#define AVCODEC_SBR_H
#include <stdint.h>
#include "fft.h"
/**
* Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the previous header.
*/
typedef struct {
uint8_t bs_start_freq;
uint8_t bs_stop_freq;
uint8_t bs_xover_band;
/**
* @defgroup bs_header_extra_1 Variables associated with bs_header_extra_1
* @{
*/
uint8_t bs_freq_scale;
uint8_t bs_alter_scale;
uint8_t bs_noise_bands;
/** @} */
} SpectrumParameters;
#define SBR_SYNTHESIS_BUF_SIZE ((1280-128)*2)
/**
* Spectral Band Replication per channel data
*/
typedef struct {
/**
* @defgroup bitstream Main bitstream data variables
* @{
*/
unsigned bs_frame_class;
unsigned bs_add_harmonic_flag;
unsigned bs_num_env[2];
uint8_t bs_freq_res[7];
uint8_t bs_var_bord[2];
uint8_t bs_num_rel[2];
uint8_t bs_rel_bord[2][3];
unsigned bs_pointer;
unsigned bs_num_noise;
uint8_t bs_df_env[5];
uint8_t bs_df_noise[2];
uint8_t bs_invf_mode[2][5];
uint8_t bs_add_harmonic[48];
unsigned bs_amp_res;
/** @} */
/**
* @defgroup state State variables
* @{
*/
DECLARE_ALIGNED(16, float, synthesis_filterbank_samples)[SBR_SYNTHESIS_BUF_SIZE];
DECLARE_ALIGNED(16, float, analysis_filterbank_samples) [1312];
int synthesis_filterbank_samples_offset;
///l_APrev and l_A
int e_a[2];
///Chirp factors
float bw_array[5];
///QMF values of the original signal
float W[2][32][32][2];
///QMF output of the HF adjustor
float Y[2][38][64][2];
float g_temp[42][48];
float q_temp[42][48];
uint8_t s_indexmapped[8][48];
///Envelope scalefactors
float env_facs[6][48];
///Noise scalefactors
float noise_facs[3][5];
///Envelope time borders
uint8_t t_env[8];
///Envelope time border of the last envelope of the previous frame
uint8_t t_env_num_env_old;
///Noise time borders
uint8_t t_q[3];
unsigned f_indexnoise;
unsigned f_indexsine;
/** @} */
} SBRData;
/**
* Spectral Band Replication
*/
typedef struct {
int sample_rate;
int start;
int reset;
SpectrumParameters spectrum_params;
int bs_amp_res_header;
/**
* @defgroup bs_header_extra_2 variables associated with bs_header_extra_2
* @{
*/
unsigned bs_limiter_bands;
unsigned bs_limiter_gains;
unsigned bs_interpol_freq;
unsigned bs_smoothing_mode;
/** @} */
unsigned bs_coupling;
unsigned k[5]; ///< k0, k1, k2
///kx', and kx respectively, kx is the first QMF subband where SBR is used.
///kx' is its value from the previous frame
unsigned kx[2];
///M' and M respectively, M is the number of QMF subbands that use SBR.
unsigned m[2];
///The number of frequency bands in f_master
unsigned n_master;
SBRData data[2];
///N_Low and N_High respectively, the number of frequency bands for low and high resolution
unsigned n[2];
///Number of noise floor bands
unsigned n_q;
///Number of limiter bands
unsigned n_lim;
///The master QMF frequency grouping
uint16_t f_master[49];
///Frequency borders for low resolution SBR
uint16_t f_tablelow[25];
///Frequency borders for high resolution SBR
uint16_t f_tablehigh[49];
///Frequency borders for noise floors
uint16_t f_tablenoise[6];
///Frequency borders for the limiter
uint16_t f_tablelim[29];
unsigned num_patches;
uint8_t patch_num_subbands[6];
uint8_t patch_start_subband[6];
///QMF low frequency input to the HF generator
float X_low[32][40][2];
///QMF output of the HF generator
float X_high[64][40][2];
///QMF values of the reconstructed signal
DECLARE_ALIGNED(16, float, X)[2][32][64];
///Zeroth coefficient used to filter the subband signals
float alpha0[64][2];
///First coefficient used to filter the subband signals
float alpha1[64][2];
///Dequantized envelope scalefactors, remapped
float e_origmapped[7][48];
///Dequantized noise scalefactors, remapped
float q_mapped[7][48];
///Sinusoidal presence, remapped
uint8_t s_mapped[7][48];
///Estimated envelope
float e_curr[7][48];
///Amplitude adjusted noise scalefactors
float q_m[7][48];
///Sinusoidal levels
float s_m[7][48];
float gain[7][48];
DECLARE_ALIGNED(16, float, qmf_filter_scratch)[5][64];
RDFTContext rdft;
FFTContext mdct;
} SpectralBandReplication;
#endif /* AVCODEC_SBR_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment