Commit e45e6005 authored by Xuewei Meng's avatar Xuewei Meng Committed by Steven Liu

libavfilter/dnn_native: Add multiple padding methods in dnn native

Add another two padding methods "VALID" and "SAME" as tensorflow,
and keep the existing "SAME_CLAMP_TO_EDGE" method suggested by sr filter.
As "SAME_CLAMP_TO_EDGE"can keep the output with the same size as original input,
and gives a slight better result as mentioned by sr filter.
Reviewed-by: 's avatarGuo, Yejun <yejun.guo@intel.com>
Signed-off-by: 's avatarXuewei Meng <xwmeng96@gmail.com>
Signed-off-by: 's avatarSteven Liu <lq@onvideo.cn>
parent 154a730b
......@@ -61,6 +61,12 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c
return DNN_ERROR;
}
cur_channels = conv_params->output_num;
if (conv_params->padding_method == VALID) {
int pad_size = conv_params->kernel_size - 1;
cur_height -= pad_size;
cur_width -= pad_size;
}
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
......@@ -77,6 +83,10 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c
if (network->layers[layer].output){
av_freep(&network->layers[layer].output);
}
if (cur_height <= 0 || cur_width <= 0)
return DNN_ERROR;
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
if (!network->layers[layer].output){
return DNN_ERROR;
......@@ -154,13 +164,14 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
ff_dnn_free_model_native(&model);
return NULL;
}
conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
conv_params->activation = (int32_t)avio_rl32(model_file_context);
conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size;
dnn_size += 16 + (kernel_size + conv_params->output_num << 2);
dnn_size += 20 + (kernel_size + conv_params->output_num << 2);
if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
avio_closep(&model_file_context);
......@@ -218,23 +229,35 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
{
int y, x, n_filter, ch, kernel_y, kernel_x;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 : 0;
for (y = 0; y < height; ++y){
for (x = 0; x < width; ++x){
for (n_filter = 0; n_filter < conv_params->output_num; ++n_filter){
for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
output[n_filter] = conv_params->biases[n_filter];
for (ch = 0; ch < conv_params->input_num; ++ch){
for (kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y){
for (kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x){
output[n_filter] += input[CLAMP_TO_EDGE(y + kernel_y - radius, height) * src_linesize +
CLAMP_TO_EDGE(x + kernel_x - radius, width) * conv_params->input_num + ch] *
conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + kernel_y - radius, height);
int x_pos = CLAMP_TO_EDGE(x + kernel_x - radius, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + kernel_y - radius;
int x_pos = x + kernel_x - radius;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
......@@ -305,6 +328,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
conv_params = (ConvolutionalParams *)network->layers[layer].params;
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
cur_channels = conv_params->output_num;
if (conv_params->padding_method == VALID) {
int pad_size = conv_params->kernel_size - 1;
cur_height -= pad_size;
cur_width -= pad_size;
}
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
......
......@@ -34,6 +34,8 @@ typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType;
typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
typedef struct Layer{
DNNLayerType type;
float *output;
......@@ -43,6 +45,7 @@ typedef struct Layer{
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
DNNActivationFunc activation;
DNNConvPaddingParam padding_method;
float *kernel;
float *biases;
} ConvolutionalParams;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment