Commit e32aaba3 authored by Vitor Sessak's avatar Vitor Sessak Committed by Michael Niedermayer

mpegaudiodec: move imdct36() to MPADSPContext

Signed-off-by: 's avatarMichael Niedermayer <michaelni@gmx.at>
parent df9c1cfb
......@@ -58,7 +58,7 @@ typedef struct GranuleDef {
int preflag;
int short_start, long_end; /* long/short band indexes */
uint8_t scale_factors[40];
INTFLOAT sb_hybrid[SBLIMIT * 18]; /* 576 samples */
DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
} GranuleDef;
typedef struct MPADecodeContext {
......@@ -129,7 +129,10 @@ static uint16_t band_index_long[9][23];
static INTFLOAT is_table[2][16];
static INTFLOAT is_table_lsf[2][2][16];
static INTFLOAT csa_table[8][4];
static INTFLOAT mdct_win[8][36];
/** Window for MDCT. Note that only the component [0,17] and [20,37] are used,
the components 18 and 19 are there only to assure 128-bit alignment for asm
*/
DECLARE_ALIGNED(16, static INTFLOAT, mdct_win)[8][40];
static int16_t division_tab3[1<<6 ];
static int16_t division_tab5[1<<8 ];
......@@ -455,15 +458,17 @@ static av_cold int decode_init(AVCodecContext * avctx)
if (j == 2)
mdct_win[j][i/3] = FIXHR((d / (1<<5)));
else
mdct_win[j][i ] = FIXHR((d / (1<<5)));
else {
int idx = i < 18 ? i : i + 2;
mdct_win[j][idx] = FIXHR((d / (1<<5)));
}
}
}
/* NOTE: we do frequency inversion adter the MDCT by changing
the sign of the right window coefs */
for (j = 0; j < 4; j++) {
for (i = 0; i < 36; i += 2) {
for (i = 0; i < 40; i += 2) {
mdct_win[j + 4][i ] = mdct_win[j][i ];
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
}
......@@ -478,32 +483,9 @@ static av_cold int decode_init(AVCodecContext * avctx)
}
#define C3 FIXHR(0.86602540378443864676/2)
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36[9] = {
FIXR(0.50190991877167369479),
FIXR(0.51763809020504152469), //0
FIXR(0.55168895948124587824),
FIXR(0.61038729438072803416),
FIXR(0.70710678118654752439), //1
FIXR(0.87172339781054900991),
FIXR(1.18310079157624925896),
FIXR(1.93185165257813657349), //2
FIXR(5.73685662283492756461),
};
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36h[9] = {
FIXHR(0.50190991877167369479/2),
FIXHR(0.51763809020504152469/2), //0
FIXHR(0.55168895948124587824/2),
FIXHR(0.61038729438072803416/2),
FIXHR(0.70710678118654752439/2), //1
FIXHR(0.87172339781054900991/2),
FIXHR(1.18310079157624925896/4),
FIXHR(1.93185165257813657349/4), //2
// FIXHR(5.73685662283492756461),
};
#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
cases. */
......@@ -524,7 +506,7 @@ static void imdct12(INTFLOAT *out, INTFLOAT *in)
in3 = MULH3(in3, C3, 4);
t1 = in0 - in4;
t2 = MULH3(in1 - in5, icos36h[4], 2);
t2 = MULH3(in1 - in5, C4, 2);
out[ 7] =
out[10] = t1 + t2;
......@@ -534,112 +516,20 @@ static void imdct12(INTFLOAT *out, INTFLOAT *in)
in0 += SHR(in4, 1);
in4 = in0 + in2;
in5 += 2*in1;
in1 = MULH3(in5 + in3, icos36h[1], 1);
in1 = MULH3(in5 + in3, C5, 1);
out[ 8] =
out[ 9] = in4 + in1;
out[ 2] =
out[ 3] = in4 - in1;
in0 -= in2;
in5 = MULH3(in5 - in3, icos36h[7], 2);
in5 = MULH3(in5 - in3, C6, 2);
out[ 0] =
out[ 5] = in0 - in5;
out[ 6] =
out[11] = in0 + in5;
}
/* cos(pi*i/18) */
#define C1 FIXHR(0.98480775301220805936/2)
#define C2 FIXHR(0.93969262078590838405/2)
#define C3 FIXHR(0.86602540378443864676/2)
#define C4 FIXHR(0.76604444311897803520/2)
#define C5 FIXHR(0.64278760968653932632/2)
#define C6 FIXHR(0.5/2)
#define C7 FIXHR(0.34202014332566873304/2)
#define C8 FIXHR(0.17364817766693034885/2)
/* using Lee like decomposition followed by hand coded 9 points DCT */
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
{
int i, j;
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
INTFLOAT tmp[18], *tmp1, *in1;
for (i = 17; i >= 1; i--)
in[i] += in[i-1];
for (i = 17; i >= 3; i -= 2)
in[i] += in[i-2];
for (j = 0; j < 2; j++) {
tmp1 = tmp + j;
in1 = in + j;
t2 = in1[2*4] + in1[2*8] - in1[2*2];
t3 = in1[2*0] + SHR(in1[2*6],1);
t1 = in1[2*0] - in1[2*6];
tmp1[ 6] = t1 - SHR(t2,1);
tmp1[16] = t1 + t2;
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
tmp1[10] = t3 - t0 - t2;
tmp1[ 2] = t3 + t0 + t1;
tmp1[14] = t3 + t2 - t1;
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
t0 = MULH3(in1[2*3], C3, 2);
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
tmp1[ 0] = t2 + t3 + t0;
tmp1[12] = t2 + t1 - t0;
tmp1[ 8] = t3 - t1 - t0;
}
i = 0;
for (j = 0; j < 4; j++) {
t0 = tmp[i];
t1 = tmp[i + 2];
s0 = t1 + t0;
s2 = t1 - t0;
t2 = tmp[i + 1];
t3 = tmp[i + 3];
s1 = MULH3(t3 + t2, icos36h[ j], 2);
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[9 + j];
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[8 - j];
buf[ 9 + j ] = MULH3(t0, win[18 + 9 + j], 1);
buf[ 8 - j ] = MULH3(t0, win[18 + 8 - j], 1);
t0 = s2 + s3;
t1 = s2 - s3;
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[9 + 8 - j];
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
buf[ 9 + 8 - j ] = MULH3(t0, win[18 + 9 + 8 - j], 1);
buf[ j ] = MULH3(t0, win[18 + j], 1);
i += 4;
}
s0 = tmp[16];
s1 = MULH3(tmp[17], icos36h[4], 2);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[9 + 4];
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[8 - 4];
buf[ 9 + 4 ] = MULH3(t0, win[18 + 9 + 4], 1);
buf[ 8 - 4 ] = MULH3(t0, win[18 + 8 - 4], 1);
}
/* return the number of decoded frames */
static int mp_decode_layer1(MPADecodeContext *s)
{
......@@ -1361,7 +1251,7 @@ static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
{
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
INTFLOAT out2[12];
int i, j, mdct_long_end, sblimit;
......@@ -1390,23 +1280,19 @@ static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
buf = mdct_buf;
ptr = g->sb_hybrid;
for (j = 0; j < mdct_long_end; j++) {
int win_idx = (g->switch_point && j < 2) ? 0 : g->block_type;
/* apply window & overlap with previous buffer */
out_ptr = sb_samples + j;
/* select window */
if (g->switch_point && j < 2)
win1 = mdct_win[0];
else
win1 = mdct_win[g->block_type];
/* select frequency inversion */
win = win1 + ((4 * 36) & -(j & 1));
imdct36(out_ptr, buf, ptr, win);
win = mdct_win[win_idx + (4 & -(j & 1))];
s->mpadsp.RENAME(imdct36)(out_ptr, buf, ptr, win);
out_ptr += 18 * SBLIMIT;
ptr += 18;
buf += 18;
}
for (j = mdct_long_end; j < sblimit; j++) {
/* select frequency inversion */
win = mdct_win[2] + ((4 * 36) & -(j & 1));
win = mdct_win[2 + (4 & -(j & 1))];
out_ptr = sb_samples + j;
for (i = 0; i < 6; i++) {
......
......@@ -35,6 +35,9 @@ void ff_mpadsp_init(MPADSPContext *s)
s->dct32_float = dct.dct32;
s->dct32_fixed = ff_dct32_fixed;
s->imdct36_float = ff_imdct36_float;
s->imdct36_fixed = ff_imdct36_fixed;
if (ARCH_ARM) ff_mpadsp_init_arm(s);
if (HAVE_MMX) ff_mpadsp_init_mmx(s);
if (HAVE_ALTIVEC) ff_mpadsp_init_altivec(s);
......
......@@ -28,6 +28,8 @@ typedef struct MPADSPContext {
int *dither_state, int16_t *samples, int incr);
void (*dct32_float)(float *dst, const float *src);
void (*dct32_fixed)(int *dst, const int *src);
void (*imdct36_float)(float *out, float *buf, float *in, float *win);
void (*imdct36_fixed)(int *out, int *buf, int *in, int *win);
} MPADSPContext;
void ff_mpadsp_init(MPADSPContext *s);
......@@ -61,4 +63,7 @@ void ff_mpadsp_apply_window_fixed(int32_t *synth_buf, int32_t *window,
int *dither_state, int16_t *samples,
int incr);
void ff_imdct36_fixed(int *out, int *buf, int *in, int *win);
void ff_imdct36_float(float *out, float *buf, float *in, float *win);
#endif /* AVCODEC_MPEGAUDIODSP_H */
......@@ -39,7 +39,12 @@ static inline float round_sample(float *sum)
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
#define MULS(ra, rb) ((ra)*(rb))
#define MULH3(x, y, s) ((s)*(y)*(x))
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
#define MULLx(x, y, s) ((y)*(x))
#define FIXHR(x) ((float)(x))
#define FIXR(x) ((float)(x))
#define SHR(a,b) ((a)*(1.0f/(1<<(b))))
#else
......@@ -57,6 +62,11 @@ static inline int round_sample(int64_t *sum)
# define MULS(ra, rb) MUL64(ra, rb)
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
# define MULH3(x, y, s) MULH((s)*(x), y)
# define MULLx(x, y, s) MULL(x,y,s)
# define SHR(a,b) ((a)>>(b))
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
#endif
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
......@@ -203,3 +213,122 @@ void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
for(j=0; j < 16; j++)
window[512+128+16*i+j] = window[64*i+48-j];
}
/* cos(pi*i/18) */
#define C1 FIXHR(0.98480775301220805936/2)
#define C2 FIXHR(0.93969262078590838405/2)
#define C3 FIXHR(0.86602540378443864676/2)
#define C4 FIXHR(0.76604444311897803520/2)
#define C5 FIXHR(0.64278760968653932632/2)
#define C6 FIXHR(0.5/2)
#define C7 FIXHR(0.34202014332566873304/2)
#define C8 FIXHR(0.17364817766693034885/2)
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36[9] = {
FIXR(0.50190991877167369479),
FIXR(0.51763809020504152469),
FIXR(0.55168895948124587824),
FIXR(0.61038729438072803416),
FIXR(0.70710678118654752439),
FIXR(0.87172339781054900991),
FIXR(1.18310079157624925896),
FIXR(1.93185165257813657349),
FIXR(5.73685662283492756461),
};
/* 0.5 / cos(pi*(2*i+1)/36) */
static const INTFLOAT icos36h[9] = {
FIXHR(0.50190991877167369479/2),
FIXHR(0.51763809020504152469/2),
FIXHR(0.55168895948124587824/2),
FIXHR(0.61038729438072803416/2),
FIXHR(0.70710678118654752439/2),
FIXHR(0.87172339781054900991/2),
FIXHR(1.18310079157624925896/4),
FIXHR(1.93185165257813657349/4),
};
/* using Lee like decomposition followed by hand coded 9 points DCT */
void RENAME(ff_imdct36)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
INTFLOAT *win)
{
int i, j;
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
INTFLOAT tmp[18], *tmp1, *in1;
for(i=17;i>=1;i--)
in[i] += in[i-1];
for(i=17;i>=3;i-=2)
in[i] += in[i-2];
for(j=0;j<2;j++) {
tmp1 = tmp + j;
in1 = in + j;
t2 = in1[2*4] + in1[2*8] - in1[2*2];
t3 = in1[2*0] + SHR(in1[2*6],1);
t1 = in1[2*0] - in1[2*6];
tmp1[ 6] = t1 - SHR(t2,1);
tmp1[16] = t1 + t2;
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
tmp1[10] = t3 - t0 - t2;
tmp1[ 2] = t3 + t0 + t1;
tmp1[14] = t3 + t2 - t1;
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
t0 = MULH3(in1[2*3], C3, 2);
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
tmp1[ 0] = t2 + t3 + t0;
tmp1[12] = t2 + t1 - t0;
tmp1[ 8] = t3 - t1 - t0;
}
i = 0;
for(j=0;j<4;j++) {
t0 = tmp[i];
t1 = tmp[i + 2];
s0 = t1 + t0;
s2 = t1 - t0;
t2 = tmp[i + 1];
t3 = tmp[i + 3];
s1 = MULH3(t3 + t2, icos36h[j], 2);
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
buf[9 + j] = MULH3(t0, win[20 + 9 + j], 1);
buf[8 - j] = MULH3(t0, win[20 + 8 - j], 1);
t0 = s2 + s3;
t1 = s2 - s3;
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
buf[9 + 8 - j] = MULH3(t0, win[20 + 9 + 8 - j], 1);
buf[ + j] = MULH3(t0, win[20 + j], 1);
i += 4;
}
s0 = tmp[16];
s1 = MULH3(tmp[17], icos36h[4], 2);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
buf[9 + 4] = MULH3(t0, win[20 + 9 + 4], 1);
buf[8 - 4] = MULH3(t0, win[20 + 8 - 4], 1);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment