Commit dff39ea9 authored by Guo, Yejun's avatar Guo, Yejun Committed by Pedro Arthur

dnn: add tf.nn.conv2d support for native model

Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many
nodes (within a scope) in the graph, it just acts like other layers.
tf.nn.conv2d only creates one node in the graph, and no internal
nodes such as 'kernel' are created.

The format of native model file is also changed, a flag named
has_bias is added, so change the version number.
Signed-off-by: 's avatarGuo, Yejun <yejun.guo@intel.com>
Signed-off-by: 's avatarPedro Arthur <bygrandao@gmail.com>
parent a269fa04
...@@ -98,7 +98,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) ...@@ -98,7 +98,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
char header_expected[] = "FFMPEGDNNNATIVE"; char header_expected[] = "FFMPEGDNNNATIVE";
char *buf; char *buf;
size_t size; size_t size;
int version, header_size, major_version_expected = 0; int version, header_size, major_version_expected = 1;
ConvolutionalNetwork *network = NULL; ConvolutionalNetwork *network = NULL;
AVIOContext *model_file_context; AVIOContext *model_file_context;
int file_size, dnn_size, parsed_size; int file_size, dnn_size, parsed_size;
......
...@@ -38,27 +38,41 @@ int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int fil ...@@ -38,27 +38,41 @@ int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int fil
conv_params->input_num = (int32_t)avio_rl32(model_file_context); conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context); conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
dnn_size += 28;
kernel_size = conv_params->input_num * conv_params->output_num * kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size; conv_params->kernel_size * conv_params->kernel_size;
dnn_size += 24 + (kernel_size + conv_params->output_num << 2); dnn_size += kernel_size * 4;
if (conv_params->has_bias)
dnn_size += conv_params->output_num * 4;
if (dnn_size > file_size || conv_params->input_num <= 0 || if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
av_freep(&conv_params); av_freep(&conv_params);
return 0; return 0;
} }
conv_params->kernel = av_malloc(kernel_size * sizeof(float)); conv_params->kernel = av_malloc(kernel_size * sizeof(float));
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); if (!conv_params->kernel) {
if (!conv_params->kernel || !conv_params->biases){
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
av_freep(&conv_params); av_freep(&conv_params);
return 0; return 0;
} }
for (int i = 0; i < kernel_size; ++i){ for (int i = 0; i < kernel_size; ++i) {
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
} }
for (int i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); conv_params->biases = NULL;
if (conv_params->has_bias) {
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
if (!conv_params->biases){
av_freep(&conv_params->kernel);
av_freep(&conv_params);
return 0;
}
for (int i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
} }
layer->params = conv_params; layer->params = conv_params;
...@@ -103,7 +117,10 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_ ...@@ -103,7 +117,10 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
for (int y = pad_size; y < height - pad_size; ++y) { for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) { for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
output[n_filter] = conv_params->biases[n_filter]; if (conv_params->has_bias)
output[n_filter] = conv_params->biases[n_filter];
else
output[n_filter] = 0.f;
for (int ch = 0; ch < conv_params->input_num; ++ch) { for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
......
...@@ -31,6 +31,7 @@ typedef struct ConvolutionalParams{ ...@@ -31,6 +31,7 @@ typedef struct ConvolutionalParams{
DNNActivationFunc activation; DNNActivationFunc activation;
DNNConvPaddingParam padding_method; DNNConvPaddingParam padding_method;
int32_t dilation; int32_t dilation;
int32_t has_bias;
float *kernel; float *kernel;
float *biases; float *biases;
} ConvolutionalParams; } ConvolutionalParams;
......
...@@ -97,6 +97,7 @@ static int test_with_same_dilate(void) ...@@ -97,6 +97,7 @@ static int test_with_same_dilate(void)
float bias[2] = { -1.6574852, -0.72915393 }; float bias[2] = { -1.6574852, -0.72915393 };
params.activation = TANH; params.activation = TANH;
params.has_bias = 1;
params.biases = bias; params.biases = bias;
params.dilation = 2; params.dilation = 2;
params.input_num = 3; params.input_num = 3;
...@@ -196,6 +197,7 @@ static int test_with_valid(void) ...@@ -196,6 +197,7 @@ static int test_with_valid(void)
float bias[2] = { -0.4773722, -0.19620377 }; float bias[2] = { -0.4773722, -0.19620377 };
params.activation = TANH; params.activation = TANH;
params.has_bias = 1;
params.biases = bias; params.biases = bias;
params.dilation = 1; params.dilation = 1;
params.input_num = 3; params.input_num = 3;
......
...@@ -118,7 +118,7 @@ class TFConverter: ...@@ -118,7 +118,7 @@ class TFConverter:
return knode, bnode, dnode, anode return knode, bnode, dnode, anode
def dump_conv2d_to_file(self, node, f): def dump_complex_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D') assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1 self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name) self.converted_nodes.add(node.name)
...@@ -153,7 +153,8 @@ class TFConverter: ...@@ -153,7 +153,8 @@ class TFConverter:
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
kernel = np.transpose(kernel, [3, 0, 1, 2]) kernel = np.transpose(kernel, [3, 0, 1, 2])
np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f) has_bias = 1
np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
kernel.tofile(f) kernel.tofile(f)
btensor = bnode.attr['value'].tensor btensor = bnode.attr['value'].tensor
...@@ -173,6 +174,41 @@ class TFConverter: ...@@ -173,6 +174,41 @@ class TFConverter:
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_simple_conv2d_to_file(self, node, f):
assert(node.op == 'Conv2D')
self.layer_number = self.layer_number + 1
self.converted_nodes.add(node.name)
node0 = self.name_node_dict[node.input[0]]
node1 = self.name_node_dict[node.input[1]]
if node0.op == 'Const':
knode = node0
input_name = node.input[1]
else:
knode = node1
input_name = node.input[0]
ktensor = knode.attr['value'].tensor
filter_height = ktensor.tensor_shape.dim[0].size
filter_width = ktensor.tensor_shape.dim[1].size
in_channels = ktensor.tensor_shape.dim[2].size
out_channels = ktensor.tensor_shape.dim[3].size
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
kernel = np.transpose(kernel, [3, 0, 1, 2])
has_bias = 0
dilation = 1
padding = node.attr['padding'].s.decode("utf-8")
np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
kernel.tofile(f)
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
def dump_depth2space_to_file(self, node, f): def dump_depth2space_to_file(self, node, f):
assert(node.op == 'DepthToSpace') assert(node.op == 'DepthToSpace')
self.layer_number = self.layer_number + 1 self.layer_number = self.layer_number + 1
...@@ -222,10 +258,12 @@ class TFConverter: ...@@ -222,10 +258,12 @@ class TFConverter:
scope_name = TFConverter.get_scope_name(node.name) scope_name = TFConverter.get_scope_name(node.name)
if scope_name in self.conv2d_scope_names: if scope_name in self.conv2d_scope_names:
if node.op == 'Conv2D': if node.op == 'Conv2D':
self.dump_conv2d_to_file(node, f) self.dump_complex_conv2d_to_file(node, f)
continue continue
if node.op == 'DepthToSpace': if node.op == 'Conv2D':
self.dump_simple_conv2d_to_file(node, f)
elif node.op == 'DepthToSpace':
self.dump_depth2space_to_file(node, f) self.dump_depth2space_to_file(node, f)
elif node.op == 'MirrorPad': elif node.op == 'MirrorPad':
self.dump_mirrorpad_to_file(node, f) self.dump_mirrorpad_to_file(node, f)
...@@ -312,10 +350,16 @@ class TFConverter: ...@@ -312,10 +350,16 @@ class TFConverter:
def generate_conv2d_scope_info(self): def generate_conv2d_scope_info(self):
# conv2d is a sub block in graph, get the scope name # mostly, conv2d is a sub block in graph, get the scope name
for node in self.nodes: for node in self.nodes:
if node.op == 'Conv2D': if node.op == 'Conv2D':
scope = TFConverter.get_scope_name(node.name) scope = TFConverter.get_scope_name(node.name)
# for the case tf.nn.conv2d is called directly
if scope == '':
continue
# for the case tf.nn.conv2d is called within a scope
if scope + '/kernel' not in self.name_node_dict:
continue
self.conv2d_scope_names.add(scope) self.conv2d_scope_names.add(scope)
# get the input name to the conv2d sub block # get the input name to the conv2d sub block
......
...@@ -20,7 +20,7 @@ ...@@ -20,7 +20,7 @@
str = 'FFMPEGDNNNATIVE' str = 'FFMPEGDNNNATIVE'
# increase major and reset minor when we have to re-convert the model file # increase major and reset minor when we have to re-convert the model file
major = 0 major = 1
# increase minor when we don't have to re-convert the model file # increase minor when we don't have to re-convert the model file
minor = 2 minor = 0
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment