Commit c81a7063 authored by Nicolas Bertrand's avatar Nicolas Bertrand Committed by Diego Biurrun

JPEG 2000 decoder for DCinema

Based on the 2007 GSoC project from Kamil Nowosad <k.nowosad@students.mimuw.edu.pl>
Updated to current programming standards, style and many more small
fixes by Diego Biurrun <diego@biurrun.de>.
Signed-off-by: 's avatarDiego Biurrun <diego@biurrun.de>
parent 0c15a9aa
...@@ -11,6 +11,7 @@ version 10: ...@@ -11,6 +11,7 @@ version 10:
filtergraph description to be read from a file filtergraph description to be read from a file
- uniform options syntax across all filters - uniform options syntax across all filters
- new interlace filter - new interlace filter
- JPEG 2000 decoder
version 9: version 9:
......
...@@ -373,8 +373,8 @@ following image formats are supported: ...@@ -373,8 +373,8 @@ following image formats are supported:
@tab Digital Picture Exchange @tab Digital Picture Exchange
@item JPEG @tab X @tab X @item JPEG @tab X @tab X
@tab Progressive JPEG is not supported. @tab Progressive JPEG is not supported.
@item JPEG 2000 @tab E @tab E @item JPEG 2000 @tab E @tab X
@tab decoding supported through external library libopenjpeg @tab encoding supported through external library libopenjpeg
@item JPEG-LS @tab X @tab X @item JPEG-LS @tab X @tab X
@item LJPEG @tab X @tab @item LJPEG @tab X @tab
@tab Lossless JPEG @tab Lossless JPEG
......
...@@ -205,6 +205,8 @@ OBJS-$(CONFIG_INDEO4_DECODER) += indeo4.o ivi_common.o ivi_dsp.o ...@@ -205,6 +205,8 @@ OBJS-$(CONFIG_INDEO4_DECODER) += indeo4.o ivi_common.o ivi_dsp.o
OBJS-$(CONFIG_INDEO5_DECODER) += indeo5.o ivi_common.o ivi_dsp.o OBJS-$(CONFIG_INDEO5_DECODER) += indeo5.o ivi_common.o ivi_dsp.o
OBJS-$(CONFIG_INTERPLAY_DPCM_DECODER) += dpcm.o OBJS-$(CONFIG_INTERPLAY_DPCM_DECODER) += dpcm.o
OBJS-$(CONFIG_INTERPLAY_VIDEO_DECODER) += interplayvideo.o OBJS-$(CONFIG_INTERPLAY_VIDEO_DECODER) += interplayvideo.o
OBJS-$(CONFIG_JPEG2000_DECODER) += jpeg2000dec.o jpeg2000.o \
jpeg2000dwt.o mqcdec.o mqc.o
OBJS-$(CONFIG_JPEGLS_DECODER) += jpeglsdec.o jpegls.o \ OBJS-$(CONFIG_JPEGLS_DECODER) += jpeglsdec.o jpegls.o \
mjpegdec.o mjpeg.o mjpegdec.o mjpeg.o
OBJS-$(CONFIG_JPEGLS_ENCODER) += jpeglsenc.o jpegls.o OBJS-$(CONFIG_JPEGLS_ENCODER) += jpeglsenc.o jpegls.o
......
...@@ -160,6 +160,7 @@ void avcodec_register_all(void) ...@@ -160,6 +160,7 @@ void avcodec_register_all(void)
REGISTER_DECODER(INDEO4, indeo4); REGISTER_DECODER(INDEO4, indeo4);
REGISTER_DECODER(INDEO5, indeo5); REGISTER_DECODER(INDEO5, indeo5);
REGISTER_DECODER(INTERPLAY_VIDEO, interplay_video); REGISTER_DECODER(INTERPLAY_VIDEO, interplay_video);
REGISTER_DECODER(JPEG2000, jpeg2000);
REGISTER_ENCDEC (JPEGLS, jpegls); REGISTER_ENCDEC (JPEGLS, jpegls);
REGISTER_DECODER(JV, jv); REGISTER_DECODER(JV, jv);
REGISTER_DECODER(KGV1, kgv1); REGISTER_DECODER(KGV1, kgv1);
......
...@@ -2570,6 +2570,12 @@ typedef struct AVCodecContext { ...@@ -2570,6 +2570,12 @@ typedef struct AVCodecContext {
#define FF_PROFILE_MPEG4_SIMPLE_STUDIO 14 #define FF_PROFILE_MPEG4_SIMPLE_STUDIO 14
#define FF_PROFILE_MPEG4_ADVANCED_SIMPLE 15 #define FF_PROFILE_MPEG4_ADVANCED_SIMPLE 15
#define FF_PROFILE_JPEG2000_CSTREAM_RESTRICTION_0 0
#define FF_PROFILE_JPEG2000_CSTREAM_RESTRICTION_1 1
#define FF_PROFILE_JPEG2000_CSTREAM_NO_RESTRICTION 2
#define FF_PROFILE_JPEG2000_DCINEMA_2K 3
#define FF_PROFILE_JPEG2000_DCINEMA_4K 4
/** /**
* level * level
* - encoding: Set by user. * - encoding: Set by user.
......
/*
* JPEG 2000 encoder and decoder common functions
* Copyright (c) 2007 Kamil Nowosad
* Copyright (c) 2013 Nicolas Bertrand <nicoinattendu@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* JPEG 2000 image encoder and decoder common functions
*/
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "jpeg2000.h"
#define SHL(a, n) ((n) >= 0 ? (a) << (n) : (a) >> -(n))
/* tag tree routines */
/* allocate the memory for tag tree */
static int32_t tag_tree_size(uint16_t w, uint16_t h)
{
uint32_t res = 0;
while (w > 1 || h > 1) {
res += w * h;
if (res + 1 >= INT32_MAX)
return -1;
w = (w + 1) >> 1;
h = (h + 1) >> 1;
}
return (int32_t)(res + 1);
}
static Jpeg2000TgtNode *ff_jpeg2000_tag_tree_init(int w, int h)
{
int pw = w, ph = h;
Jpeg2000TgtNode *res, *t, *t2;
int32_t tt_size;
tt_size = tag_tree_size(w, h);
if (tt_size == -1)
return NULL;
t = res = av_mallocz_array(tt_size, sizeof(*t));
if (!res)
return NULL;
while (w > 1 || h > 1) {
int i, j;
pw = w;
ph = h;
w = (w + 1) >> 1;
h = (h + 1) >> 1;
t2 = t + pw * ph;
for (i = 0; i < ph; i++)
for (j = 0; j < pw; j++)
t[i * pw + j].parent = &t2[(i >> 1) * w + (j >> 1)];
t = t2;
}
t[0].parent = NULL;
return res;
}
uint8_t ff_jpeg2000_sigctxno_lut[256][4];
static int getsigctxno(int flag, int bandno)
{
int h, v, d;
h = ((flag & JPEG2000_T1_SIG_E) ? 1 : 0) +
((flag & JPEG2000_T1_SIG_W) ? 1 : 0);
v = ((flag & JPEG2000_T1_SIG_N) ? 1 : 0) +
((flag & JPEG2000_T1_SIG_S) ? 1 : 0);
d = ((flag & JPEG2000_T1_SIG_NE) ? 1 : 0) +
((flag & JPEG2000_T1_SIG_NW) ? 1 : 0) +
((flag & JPEG2000_T1_SIG_SE) ? 1 : 0) +
((flag & JPEG2000_T1_SIG_SW) ? 1 : 0);
if (bandno < 3) {
if (bandno == 1)
FFSWAP(int, h, v);
if (h == 2)
return 8;
if (h == 1) {
if (v >= 1)
return 7;
if (d >= 1)
return 6;
return 5;
}
if (v == 2)
return 4;
if (v == 1)
return 3;
if (d >= 2)
return 2;
if (d == 1)
return 1;
return 0;
} else {
if (d >= 3)
return 8;
if (d == 2) {
if (h + v >= 1)
return 7;
return 6;
}
if (d == 1) {
if (h + v >= 2)
return 5;
if (h + v == 1)
return 4;
return 3;
}
if (h + v >= 2)
return 2;
if (h + v == 1)
return 1;
return 0;
}
return 0;
}
uint8_t ff_jpeg2000_sgnctxno_lut[16][16], ff_jpeg2000_xorbit_lut[16][16];
static const int contribtab[3][3] = { { 0, -1, 1 }, { -1, -1, 0 }, { 1, 0, 1 } };
static const int ctxlbltab[3][3] = { { 13, 12, 11 }, { 10, 9, 10 }, { 11, 12, 13 } };
static const int xorbittab[3][3] = { { 1, 1, 1 }, { 1, 0, 0 }, { 0, 0, 0 } };
static int getsgnctxno(int flag, uint8_t *xorbit)
{
int vcontrib, hcontrib;
hcontrib = contribtab[flag & JPEG2000_T1_SIG_E ? flag & JPEG2000_T1_SGN_E ? 1 : 2 : 0]
[flag & JPEG2000_T1_SIG_W ? flag & JPEG2000_T1_SGN_W ? 1 : 2 : 0] + 1;
vcontrib = contribtab[flag & JPEG2000_T1_SIG_S ? flag & JPEG2000_T1_SGN_S ? 1 : 2 : 0]
[flag & JPEG2000_T1_SIG_N ? flag & JPEG2000_T1_SGN_N ? 1 : 2 : 0] + 1;
*xorbit = xorbittab[hcontrib][vcontrib];
return ctxlbltab[hcontrib][vcontrib];
}
void ff_jpeg2000_init_tier1_luts(void)
{
int i, j;
for (i = 0; i < 256; i++)
for (j = 0; j < 4; j++)
ff_jpeg2000_sigctxno_lut[i][j] = getsigctxno(i, j);
for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
ff_jpeg2000_sgnctxno_lut[i][j] =
getsgnctxno(i + (j << 8), &ff_jpeg2000_xorbit_lut[i][j]);
}
void ff_jpeg2000_set_significance(Jpeg2000T1Context *t1, int x, int y,
int negative)
{
x++;
y++;
t1->flags[y][x] |= JPEG2000_T1_SIG;
if (negative) {
t1->flags[y][x + 1] |= JPEG2000_T1_SIG_W | JPEG2000_T1_SGN_W;
t1->flags[y][x - 1] |= JPEG2000_T1_SIG_E | JPEG2000_T1_SGN_E;
t1->flags[y + 1][x] |= JPEG2000_T1_SIG_N | JPEG2000_T1_SGN_N;
t1->flags[y - 1][x] |= JPEG2000_T1_SIG_S | JPEG2000_T1_SGN_S;
} else {
t1->flags[y][x + 1] |= JPEG2000_T1_SIG_W;
t1->flags[y][x - 1] |= JPEG2000_T1_SIG_E;
t1->flags[y + 1][x] |= JPEG2000_T1_SIG_N;
t1->flags[y - 1][x] |= JPEG2000_T1_SIG_S;
}
t1->flags[y + 1][x + 1] |= JPEG2000_T1_SIG_NW;
t1->flags[y + 1][x - 1] |= JPEG2000_T1_SIG_NE;
t1->flags[y - 1][x + 1] |= JPEG2000_T1_SIG_SW;
t1->flags[y - 1][x - 1] |= JPEG2000_T1_SIG_SE;
}
static const uint8_t lut_gain[2][4] = { { 0, 0, 0, 0 }, { 0, 1, 1, 2 } };
int ff_jpeg2000_init_component(Jpeg2000Component *comp,
Jpeg2000CodingStyle *codsty,
Jpeg2000QuantStyle *qntsty,
int cbps, int dx, int dy,
AVCodecContext *avctx)
{
uint8_t log2_band_prec_width, log2_band_prec_height;
int reslevelno, bandno, gbandno = 0, ret, i, j;
uint32_t csize = 1;
if (ret = ff_jpeg2000_dwt_init(&comp->dwt, comp->coord,
codsty->nreslevels2decode - 1,
codsty->transform))
return ret;
// component size comp->coord is uint16_t so ir cannot overflow
csize = (comp->coord[0][1] - comp->coord[0][0]) *
(comp->coord[1][1] - comp->coord[1][0]);
comp->data = av_malloc_array(csize, sizeof(*comp->data));
if (!comp->data)
return AVERROR(ENOMEM);
comp->reslevel = av_malloc_array(codsty->nreslevels, sizeof(*comp->reslevel));
if (!comp->reslevel)
return AVERROR(ENOMEM);
/* LOOP on resolution levels */
for (reslevelno = 0; reslevelno < codsty->nreslevels; reslevelno++) {
int declvl = codsty->nreslevels - reslevelno; // N_L -r see ISO/IEC 15444-1:2002 B.5
Jpeg2000ResLevel *reslevel = comp->reslevel + reslevelno;
/* Compute borders for each resolution level.
* Computation of trx_0, trx_1, try_0 and try_1.
* see ISO/IEC 15444-1:2002 eq. B.5 and B-14 */
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
reslevel->coord[i][j] =
ff_jpeg2000_ceildivpow2(comp->coord_o[i][j], declvl - 1);
// update precincts size: 2^n value
reslevel->log2_prec_width = codsty->log2_prec_widths[reslevelno];
reslevel->log2_prec_height = codsty->log2_prec_heights[reslevelno];
/* Number of bands for each resolution level */
if (reslevelno == 0)
reslevel->nbands = 1;
else
reslevel->nbands = 3;
/* Number of precincts wich span the tile for resolution level reslevelno
* see B.6 in ISO/IEC 15444-1:2002 eq. B-16
* num_precincts_x = |- trx_1 / 2 ^ log2_prec_width) -| - (trx_0 / 2 ^ log2_prec_width)
* num_precincts_y = |- try_1 / 2 ^ log2_prec_width) -| - (try_0 / 2 ^ log2_prec_width)
* for Dcinema profiles in JPEG 2000
* num_precincts_x = |- trx_1 / 2 ^ log2_prec_width) -|
* num_precincts_y = |- try_1 / 2 ^ log2_prec_width) -| */
if (reslevel->coord[0][1] == reslevel->coord[0][0])
reslevel->num_precincts_x = 0;
else
reslevel->num_precincts_x =
ff_jpeg2000_ceildivpow2(reslevel->coord[0][1],
reslevel->log2_prec_width) -
(reslevel->coord[0][0] >> reslevel->log2_prec_width);
if (reslevel->coord[1][1] == reslevel->coord[1][0])
reslevel->num_precincts_y = 0;
else
reslevel->num_precincts_y =
ff_jpeg2000_ceildivpow2(reslevel->coord[1][1],
reslevel->log2_prec_height) -
(reslevel->coord[1][0] >> reslevel->log2_prec_height);
reslevel->band = av_malloc_array(reslevel->nbands, sizeof(*reslevel->band));
if (!reslevel->band)
return AVERROR(ENOMEM);
for (bandno = 0; bandno < reslevel->nbands; bandno++, gbandno++) {
Jpeg2000Band *band = reslevel->band + bandno;
int cblkno, precno;
int nb_precincts;
/* TODO: Implementation of quantization step not finished,
* see ISO/IEC 15444-1:2002 E.1 and A.6.4. */
switch (qntsty->quantsty) {
uint8_t gain;
int numbps;
case JPEG2000_QSTY_NONE:
/* TODO: to verify. No quantization in this case */
numbps = cbps +
lut_gain[codsty->transform][bandno + reslevelno > 0];
band->stepsize = (float)SHL(2048 + qntsty->mant[gbandno],
2 + numbps - qntsty->expn[gbandno]);
break;
case JPEG2000_QSTY_SI:
/*TODO: Compute formula to implement. */
band->stepsize = (float) (1 << 13);
break;
case JPEG2000_QSTY_SE:
/* Exponent quantization step.
* Formula:
* delta_b = 2 ^ (R_b - expn_b) * (1 + (mant_b / 2 ^ 11))
* R_b = R_I + log2 (gain_b )
* see ISO/IEC 15444-1:2002 E.1.1 eqn. E-3 and E-4 */
/* TODO/WARN: value of log2 (gain_b ) not taken into account
* but it works (compared to OpenJPEG). Why?
* Further investigation needed. */
gain = cbps;
band->stepsize = pow(2.0, gain - qntsty->expn[gbandno]);
band->stepsize *= (float)qntsty->mant[gbandno] / 2048.0 + 1.0;
/* FIXME: In openjepg code stespize = stepsize * 0.5. Why?
* If not set output of entropic decoder is not correct. */
band->stepsize *= 0.5;
break;
default:
band->stepsize = 0;
av_log(avctx, AV_LOG_ERROR, "Unknown quantization format\n");
break;
}
/* BITEXACT computing case --> convert to int */
if (avctx->flags & CODEC_FLAG_BITEXACT)
band->stepsize = (int32_t)(band->stepsize * (1 << 16));
/* computation of tbx_0, tbx_1, tby_0, tby_1
* see ISO/IEC 15444-1:2002 B.5 eq. B-15 and tbl B.1
* codeblock width and height is computed for
* DCI JPEG 2000 codeblock_width = codeblock_width = 32 = 2 ^ 5 */
if (reslevelno == 0) {
/* for reslevelno = 0, only one band, x0_b = y0_b = 0 */
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
band->coord[i][j] =
ff_jpeg2000_ceildivpow2(comp->coord_o[i][j],
declvl - 1);
log2_band_prec_width = reslevel->log2_prec_width;
log2_band_prec_height = reslevel->log2_prec_height;
/* see ISO/IEC 15444-1:2002 eq. B-17 and eq. B-15 */
band->log2_cblk_width = FFMIN(codsty->log2_cblk_width,
reslevel->log2_prec_width);
band->log2_cblk_height = FFMIN(codsty->log2_cblk_height,
reslevel->log2_prec_height);
} else {
/* 3 bands x0_b = 1 y0_b = 0; x0_b = 0 y0_b = 1; x0_b = y0_b = 1 */
/* x0_b and y0_b are computed with ((bandno + 1 >> i) & 1) */
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
/* Formula example for tbx_0 = ceildiv((tcx_0 - 2 ^ (declvl - 1) * x0_b) / declvl) */
band->coord[i][j] =
ff_jpeg2000_ceildivpow2(comp->coord_o[i][j] -
(((bandno + 1 >> i) & 1) << declvl - 1),
declvl);
/* TODO: Manage case of 3 band offsets here or
* in coding/decoding function? */
/* see ISO/IEC 15444-1:2002 eq. B-17 and eq. B-15 */
band->log2_cblk_width = FFMIN(codsty->log2_cblk_width,
reslevel->log2_prec_width - 1);
band->log2_cblk_height = FFMIN(codsty->log2_cblk_height,
reslevel->log2_prec_height - 1);
log2_band_prec_width = reslevel->log2_prec_width - 1;
log2_band_prec_height = reslevel->log2_prec_height - 1;
}
band->prec = av_malloc_array(reslevel->num_precincts_x *
reslevel->num_precincts_y,
sizeof(*band->prec));
if (!band->prec)
return AVERROR(ENOMEM);
nb_precincts = reslevel->num_precincts_x * reslevel->num_precincts_y;
for (precno = 0; precno < nb_precincts; precno++) {
Jpeg2000Prec *prec = band->prec + precno;
/* TODO: Explain formula for JPEG200 DCINEMA. */
/* TODO: Verify with previous count of codeblocks per band */
/* Compute P_x0 */
prec->coord[0][0] = (precno % reslevel->num_precincts_x) *
(1 << log2_band_prec_width);
prec->coord[0][0] = FFMAX(prec->coord[0][0], band->coord[0][0]);
/* Compute P_y0 */
prec->coord[1][0] = (precno / reslevel->num_precincts_x) *
(1 << log2_band_prec_height);
prec->coord[1][0] = FFMAX(prec->coord[1][0], band->coord[1][0]);
/* Compute P_x1 */
prec->coord[0][1] = prec->coord[0][0] +
(1 << log2_band_prec_width);
prec->coord[0][1] = FFMIN(prec->coord[0][1], band->coord[0][1]);
/* Compute P_y1 */
prec->coord[1][1] = prec->coord[1][0] +
(1 << log2_band_prec_height);
prec->coord[1][1] = FFMIN(prec->coord[1][1], band->coord[1][1]);
prec->nb_codeblocks_width =
ff_jpeg2000_ceildivpow2(prec->coord[0][1] -
prec->coord[0][0],
band->log2_cblk_width);
prec->nb_codeblocks_height =
ff_jpeg2000_ceildivpow2(prec->coord[1][1] -
prec->coord[1][0],
band->log2_cblk_height);
/* Tag trees initialization */
prec->cblkincl =
ff_jpeg2000_tag_tree_init(prec->nb_codeblocks_width,
prec->nb_codeblocks_height);
if (!prec->cblkincl)
return AVERROR(ENOMEM);
prec->zerobits =
ff_jpeg2000_tag_tree_init(prec->nb_codeblocks_width,
prec->nb_codeblocks_height);
if (!prec->zerobits)
return AVERROR(ENOMEM);
prec->cblk = av_malloc_array(prec->nb_codeblocks_width *
prec->nb_codeblocks_height,
sizeof(*prec->cblk));
if (!prec->cblk)
return AVERROR(ENOMEM);
for (cblkno = 0; cblkno < prec->nb_codeblocks_width * prec->nb_codeblocks_height; cblkno++) {
Jpeg2000Cblk *cblk = prec->cblk + cblkno;
uint16_t Cx0, Cy0;
/* Compute coordinates of codeblocks */
/* Compute Cx0*/
Cx0 = (prec->coord[0][0] >> band->log2_cblk_width) << band->log2_cblk_width;
Cx0 = Cx0 + ((cblkno % prec->nb_codeblocks_width) << band->log2_cblk_width);
cblk->coord[0][0] = FFMAX(Cx0, prec->coord[0][0]);
/* Compute Cy0*/
Cy0 = (prec->coord[1][0] >> band->log2_cblk_height) << band->log2_cblk_height;
Cy0 = Cy0 + ((cblkno / prec->nb_codeblocks_width) << band->log2_cblk_height);
cblk->coord[1][0] = FFMAX(Cy0, prec->coord[1][0]);
/* Compute Cx1 */
cblk->coord[0][1] = FFMIN(Cx0 + (1 << band->log2_cblk_width),
prec->coord[0][1]);
/* Compute Cy1 */
cblk->coord[1][1] = FFMIN(Cy0 + (1 << band->log2_cblk_height),
prec->coord[1][1]);
cblk->zero = 0;
cblk->lblock = 3;
cblk->length = 0;
cblk->lengthinc = 0;
cblk->npasses = 0;
}
}
}
}
return 0;
}
void ff_jpeg2000_cleanup(Jpeg2000Component *comp, Jpeg2000CodingStyle *codsty)
{
int reslevelno, bandno, precno;
for (reslevelno = 0; reslevelno < codsty->nreslevels; reslevelno++) {
Jpeg2000ResLevel *reslevel = comp->reslevel + reslevelno;
for (bandno = 0; bandno < reslevel->nbands; bandno++) {
Jpeg2000Band *band = reslevel->band + bandno;
for (precno = 0; precno < reslevel->num_precincts_x * reslevel->num_precincts_y; precno++) {
Jpeg2000Prec *prec = band->prec + precno;
av_freep(&prec->zerobits);
av_freep(&prec->cblkincl);
av_freep(&prec->cblk);
}
av_freep(&band->prec);
}
av_freep(&reslevel->band);
}
ff_dwt_destroy(&comp->dwt);
av_freep(&comp->reslevel);
av_freep(&comp->data);
}
/*
* JPEG 2000 common defines, structures and functions
* Copyright (c) 2007 Kamil Nowosad
* Copyright (c) 2013 Nicolas Bertrand <nicoinattendu@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_JPEG2000_H
#define AVCODEC_JPEG2000_H
/**
* @file
* JPEG 2000 structures and defines common
* to encoder and decoder
*/
#include <stdint.h>
#include "avcodec.h"
#include "mqc.h"
#include "jpeg2000dwt.h"
enum Jpeg2000Markers {
JPEG2000_SOC = 0xff4f, // start of codestream
JPEG2000_SIZ = 0xff51, // image and tile size
JPEG2000_COD, // coding style default
JPEG2000_COC, // coding style component
JPEG2000_TLM = 0xff55, // packed packet headers, tile-part header
JPEG2000_PLM = 0xff57, // tile-part lengths
JPEG2000_PLT, // packet length, main header
JPEG2000_QCD = 0xff5c, // quantization default
JPEG2000_QCC, // quantization component
JPEG2000_RGN, // region of interest
JPEG2000_POC, // progression order change
JPEG2000_PPM, // packet length, tile-part header
JPEG2000_PPT, // packed packet headers, main header
JPEG2000_CRG = 0xff63, // component registration
JPEG2000_COM, // comment
JPEG2000_SOT = 0xff90, // start of tile-part
JPEG2000_SOP, // start of packet
JPEG2000_EPH, // end of packet header
JPEG2000_SOD, // start of data
JPEG2000_EOC = 0xffd9, // end of codestream
};
enum Jpeg2000Quantsty { // quantization style
JPEG2000_QSTY_NONE, // no quantization
JPEG2000_QSTY_SI, // scalar derived
JPEG2000_QSTY_SE // scalar expounded
};
#define JPEG2000_MAX_CBLKW 64
#define JPEG2000_MAX_CBLKH 64
#define JPEG2000_MAX_RESLEVELS 33
// T1 flags
// flags determining significance of neighbor coefficients
#define JPEG2000_T1_SIG_N 0x0001
#define JPEG2000_T1_SIG_E 0x0002
#define JPEG2000_T1_SIG_W 0x0004
#define JPEG2000_T1_SIG_S 0x0008
#define JPEG2000_T1_SIG_NE 0x0010
#define JPEG2000_T1_SIG_NW 0x0020
#define JPEG2000_T1_SIG_SE 0x0040
#define JPEG2000_T1_SIG_SW 0x0080
#define JPEG2000_T1_SIG_NB (JPEG2000_T1_SIG_N | JPEG2000_T1_SIG_E | \
JPEG2000_T1_SIG_S | JPEG2000_T1_SIG_W | \
JPEG2000_T1_SIG_NE | JPEG2000_T1_SIG_NW | \
JPEG2000_T1_SIG_SE | JPEG2000_T1_SIG_SW)
// flags determining sign bit of neighbor coefficients
#define JPEG2000_T1_SGN_N 0x0100
#define JPEG2000_T1_SGN_S 0x0200
#define JPEG2000_T1_SGN_W 0x0400
#define JPEG2000_T1_SGN_E 0x0800
#define JPEG2000_T1_VIS 0x1000
#define JPEG2000_T1_SIG 0x2000
#define JPEG2000_T1_REF 0x4000
#define JPEG2000_T1_SGN 0x8000
// Codeblock coding styles
#define JPEG2000_CBLK_BYPASS 0x01 // Selective arithmetic coding bypass
#define JPEG2000_CBLK_RESET 0x02 // Reset context probabilities
#define JPEG2000_CBLK_TERMALL 0x04 // Terminate after each coding pass
#define JPEG2000_CBLK_VSC 0x08 // Vertical stripe causal context formation
#define JPEG2000_CBLK_PREDTERM 0x10 // Predictable termination
#define JPEG2000_CBLK_SEGSYM 0x20 // Segmentation symbols present
// Coding styles
#define JPEG2000_CSTY_PREC 0x01 // Precincts defined in coding style
#define JPEG2000_CSTY_SOP 0x02 // SOP marker present
#define JPEG2000_CSTY_EPH 0x04 // EPH marker present
// Progression orders
#define JPEG2000_PGOD_LRCP 0x00 // Layer-resolution level-component-position progression
#define JPEG2000_PGOD_RLCP 0x01 // Resolution level-layer-component-position progression
#define JPEG2000_PGOD_RPCL 0x02 // Resolution level-position-component-layer progression
#define JPEG2000_PGOD_PCRL 0x03 // Position-component-resolution level-layer progression
#define JPEG2000_PGOD_CPRL 0x04 // Component-position-resolution level-layer progression
typedef struct Jpeg2000T1Context {
int data[JPEG2000_MAX_CBLKW][JPEG2000_MAX_CBLKH];
int flags[JPEG2000_MAX_CBLKW + 2][JPEG2000_MAX_CBLKH + 2];
MqcState mqc;
} Jpeg2000T1Context;
typedef struct Jpeg2000TgtNode {
uint8_t val;
uint8_t vis;
struct Jpeg2000TgtNode *parent;
} Jpeg2000TgtNode;
typedef struct Jpeg2000CodingStyle {
uint8_t nreslevels; // number of resolution levels
uint8_t nreslevels2decode; // number of resolution levels to decode
uint8_t log2_cblk_width,
log2_cblk_height; // exponent of codeblock size
uint8_t transform; // DWT type
uint8_t csty; // coding style
uint8_t log2_prec_width,
log2_prec_height; // precinct size
uint8_t nlayers; // number of layers
uint8_t mct; // multiple component transformation
uint8_t cblk_style; // codeblock coding style
uint8_t prog_order; // progression order
uint8_t log2_prec_widths[JPEG2000_MAX_RESLEVELS]; // precincts size according resolution levels
uint8_t log2_prec_heights[JPEG2000_MAX_RESLEVELS]; // TODO: initialize prec_size array with 0?
} Jpeg2000CodingStyle;
typedef struct Jpeg2000QuantStyle {
uint8_t expn[32 * 3]; // quantization exponent
uint32_t mant[32 * 3]; // quantization mantissa
uint8_t quantsty; // quantization style
uint8_t nguardbits; // number of guard bits
} Jpeg2000QuantStyle;
typedef struct Jpeg2000Pass {
uint16_t rate;
int64_t disto;
} Jpeg2000Pass;
typedef struct Jpeg2000Cblk {
uint8_t npasses;
uint8_t ninclpasses; // number coding of passes included in codestream
uint8_t nonzerobits;
uint16_t length;
uint16_t lengthinc;
uint8_t lblock;
uint8_t zero;
uint8_t data[8192];
Jpeg2000Pass passes[100];
uint16_t coord[2][2]; // border coordinates {{x0, x1}, {y0, y1}}
} Jpeg2000Cblk; // code block
typedef struct Jpeg2000Prec {
uint16_t xi0, yi0; // codeblock indexes ([xi0, xi1))
uint16_t nb_codeblocks_width;
uint16_t nb_codeblocks_height;
Jpeg2000TgtNode *zerobits;
Jpeg2000TgtNode *cblkincl;
Jpeg2000Cblk *cblk;
uint16_t coord[2][2]; // border coordinates {{x0, x1}, {y0, y1}}
} Jpeg2000Prec; // precinct
/* TODO: stepsize can be float or integer depending on
* reversible or irreversible transformation. */
typedef struct Jpeg2000Band {
uint16_t coord[2][2]; // border coordinates {{x0, x1}, {y0, y1}}
uint16_t log2_cblk_width, log2_cblk_height;
uint16_t cblknx, cblkny;
float stepsize; // quantization stepsize
Jpeg2000Prec *prec;
} Jpeg2000Band; // subband
typedef struct Jpeg2000ResLevel {
uint8_t nbands;
uint16_t coord[2][2]; // border coordinates {{x0, x1}, {y0, y1}}
uint16_t num_precincts_x, num_precincts_y; // number of precincts in x/y direction
uint8_t log2_prec_width, log2_prec_height; // exponent of precinct size
Jpeg2000Band *band;
} Jpeg2000ResLevel; // resolution level
/* TODO: data can be float of integer depending of reversible/irreversible
* transformation.
*/
typedef struct Jpeg2000Component {
Jpeg2000ResLevel *reslevel;
DWTContext dwt;
float *data;
uint16_t coord[2][2]; // border coordinates {{x0, x1}, {y0, y1}} -- can be reduced with lowres option
uint16_t coord_o[2][2]; // border coordinates {{x0, x1}, {y0, y1}} -- original values from jpeg2000 headers
} Jpeg2000Component;
/* misc tools */
static inline int ff_jpeg2000_ceildivpow2(int a, int b)
{
return (a + (1 << b) - 1) >> b;
}
static inline int ff_jpeg2000_ceildiv(int a, int b)
{
return (a + b - 1) / b;
}
/* TIER-1 routines */
/* Set up lookup tables used in TIER-1. */
void ff_jpeg2000_init_tier1_luts(void);
/* Update significance of a coefficient at current position (x,y) and
* for neighbors. */
void ff_jpeg2000_set_significance(Jpeg2000T1Context *t1,
int x, int y, int negative);
extern uint8_t ff_jpeg2000_sigctxno_lut[256][4];
/* Get context label (number in range[0..8]) of a coefficient for significance
* propagation and cleanup coding passes. */
static inline int ff_jpeg2000_getsigctxno(int flag, int bandno)
{
return ff_jpeg2000_sigctxno_lut[flag & 255][bandno];
}
static const uint8_t refctxno_lut[2][2] = { { 14, 15 }, { 16, 16 } };
/* Get context label (number in range[14..16]) of a coefficient for magnitude
* refinement pass. */
static inline int ff_jpeg2000_getrefctxno(int flag)
{
return refctxno_lut[(flag >> 14) & 1][(flag & 255) != 0];
}
extern uint8_t ff_jpeg2000_sgnctxno_lut[16][16];
extern uint8_t ff_jpeg2000_xorbit_lut[16][16];
/* Get context label (number in range[9..13]) for sign decoding. */
static inline int ff_jpeg2000_getsgnctxno(int flag, int *xorbit)
{
*xorbit = ff_jpeg2000_xorbit_lut[flag & 15][(flag >> 8) & 15];
return ff_jpeg2000_sgnctxno_lut[flag & 15][(flag >> 8) & 15];
}
int ff_jpeg2000_init_component(Jpeg2000Component *comp,
Jpeg2000CodingStyle *codsty,
Jpeg2000QuantStyle *qntsty,
int cbps, int dx, int dy,
AVCodecContext *ctx);
void ff_jpeg2000_cleanup(Jpeg2000Component *comp, Jpeg2000CodingStyle *codsty);
#endif /* AVCODEC_JPEG2000_H */
/*
* JPEG 2000 image decoder
* Copyright (c) 2007 Kamil Nowosad
* Copyright (c) 2013 Nicolas Bertrand <nicoinattendu@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* JPEG 2000 image decoder
*/
#include "libavutil/common.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "bytestream.h"
#include "internal.h"
#include "jpeg2000.h"
#define JP2_SIG_TYPE 0x6A502020
#define JP2_SIG_VALUE 0x0D0A870A
#define JP2_CODESTREAM 0x6A703263
#define HAD_COC 0x01
#define HAD_QCC 0x02
typedef struct Jpeg2000TilePart {
uint16_t tp_idx; // Tile-part index
uint8_t tile_index; // Tile index who refers the tile-part
uint32_t tp_len; // Length of tile-part
const uint8_t *tp_start_bstrm; // Start address bit stream in tile-part
const uint8_t *tp_end_bstrm; // End address of the bit stream tile part
} Jpeg2000TilePart;
/* RMK: For JPEG2000 DCINEMA 3 tile-parts in a tile
* one per component, so tile_part elements have a size of 3 */
typedef struct Jpeg2000Tile {
Jpeg2000Component *comp;
uint8_t properties[4];
Jpeg2000CodingStyle codsty[4];
Jpeg2000QuantStyle qntsty[4];
Jpeg2000TilePart tile_part[3];
} Jpeg2000Tile;
typedef struct Jpeg2000DecoderContext {
AVClass *class;
AVCodecContext *avctx;
int width, height;
int image_offset_x, image_offset_y;
int tile_offset_x, tile_offset_y;
uint8_t cbps[4]; // bits per sample in particular components
uint8_t sgnd[4]; // if a component is signed
uint8_t properties[4];
int cdx[4], cdy[4];
int precision;
int ncomponents;
int tile_width, tile_height;
int numXtiles, numYtiles;
int maxtilelen;
Jpeg2000CodingStyle codsty[4];
Jpeg2000QuantStyle qntsty[4];
const uint8_t *buf_start;
const uint8_t *buf;
const uint8_t *buf_end;
int bit_index;
int16_t curtileno;
Jpeg2000Tile *tile;
/*options parameters*/
int16_t lowres;
int16_t reduction_factor;
} Jpeg2000DecoderContext;
/* get_bits functions for JPEG2000 packet bitstream
* It is a get_bit function with a bit-stuffing routine. If the value of the
* byte is 0xFF, the next byte includes an extra zero bit stuffed into the MSB.
* cf. ISO-15444-1:2002 / B.10.1 Bit-stuffing routine */
static int get_bits(Jpeg2000DecoderContext *s, int n)
{
int res = 0;
if (s->buf_end - s->buf < ((n - s->bit_index) >> 8))
return AVERROR(EINVAL);
while (--n >= 0) {
res <<= 1;
if (s->bit_index == 0) {
s->bit_index = 7 + (*s->buf != 0xff);
s->buf++;
}
s->bit_index--;
res |= (*s->buf >> s->bit_index) & 1;
}
return res;
}
static void jpeg2000_flush(Jpeg2000DecoderContext *s)
{
if (*s->buf == 0xff)
s->buf++;
s->bit_index = 8;
s->buf++;
}
/* decode the value stored in node */
static int tag_tree_decode(Jpeg2000DecoderContext *s, Jpeg2000TgtNode *node,
int threshold)
{
Jpeg2000TgtNode *stack[30];
int sp = -1, curval = 0;
while (node && !node->vis) {
stack[++sp] = node;
node = node->parent;
}
if (node)
curval = node->val;
else
curval = stack[sp]->val;
while (curval < threshold && sp >= 0) {
if (curval < stack[sp]->val)
curval = stack[sp]->val;
while (curval < threshold) {
int ret;
if ((ret = get_bits(s, 1)) > 0) {
stack[sp]->vis++;
break;
} else if (!ret)
curval++;
else
return ret;
}
stack[sp]->val = curval;
sp--;
}
return curval;
}
/* marker segments */
/* get sizes and offsets of image, tiles; number of components */
static int get_siz(Jpeg2000DecoderContext *s)
{
int i;
if (s->buf_end - s->buf < 36)
return AVERROR(EINVAL);
s->avctx->profile = bytestream_get_be16(&s->buf); // Rsiz
s->width = bytestream_get_be32(&s->buf); // Width
s->height = bytestream_get_be32(&s->buf); // Height
s->image_offset_x = bytestream_get_be32(&s->buf); // X0Siz
s->image_offset_y = bytestream_get_be32(&s->buf); // Y0Siz
s->tile_width = bytestream_get_be32(&s->buf); // XTSiz
s->tile_height = bytestream_get_be32(&s->buf); // YTSiz
s->tile_offset_x = bytestream_get_be32(&s->buf); // XT0Siz
s->tile_offset_y = bytestream_get_be32(&s->buf); // YT0Siz
s->ncomponents = bytestream_get_be16(&s->buf); // CSiz
if (s->buf_end - s->buf < 2 * s->ncomponents)
return AVERROR(EINVAL);
for (i = 0; i < s->ncomponents; i++) { // Ssiz_i XRsiz_i, YRsiz_i
uint8_t x = bytestream_get_byte(&s->buf);
s->cbps[i] = (x & 0x7f) + 1;
s->precision = FFMAX(s->cbps[i], s->precision);
s->sgnd[i] = (x & 0x80) == 1;
s->cdx[i] = bytestream_get_byte(&s->buf);
s->cdy[i] = bytestream_get_byte(&s->buf);
}
s->numXtiles = ff_jpeg2000_ceildiv(s->width - s->tile_offset_x, s->tile_width);
s->numYtiles = ff_jpeg2000_ceildiv(s->height - s->tile_offset_y, s->tile_height);
s->tile = av_mallocz(s->numXtiles * s->numYtiles * sizeof(*s->tile));
if (!s->tile)
return AVERROR(ENOMEM);
for (i = 0; i < s->numXtiles * s->numYtiles; i++) {
Jpeg2000Tile *tile = s->tile + i;
tile->comp = av_mallocz(s->ncomponents * sizeof(*tile->comp));
if (!tile->comp)
return AVERROR(ENOMEM);
}
/* compute image size with reduction factor */
s->avctx->width = ff_jpeg2000_ceildivpow2(s->width - s->image_offset_x,
s->reduction_factor);
s->avctx->height = ff_jpeg2000_ceildivpow2(s->height - s->image_offset_y,
s->reduction_factor);
switch (s->avctx->profile) {
case FF_PROFILE_JPEG2000_DCINEMA_2K:
case FF_PROFILE_JPEG2000_DCINEMA_4K:
/* XYZ color-space for digital cinema profiles */
s->avctx->pix_fmt = AV_PIX_FMT_XYZ12LE;
break;
default:
/* For other profiles selects color-space according number of
* components and bit depth precision. */
switch (s->ncomponents) {
case 1:
if (s->precision > 8)
s->avctx->pix_fmt = AV_PIX_FMT_GRAY16;
else
s->avctx->pix_fmt = AV_PIX_FMT_GRAY8;
break;
case 3:
if (s->precision > 8)
s->avctx->pix_fmt = AV_PIX_FMT_RGB48;
else
s->avctx->pix_fmt = AV_PIX_FMT_RGB24;
break;
case 4:
s->avctx->pix_fmt = AV_PIX_FMT_BGRA;
break;
default:
/* pixel format can not be identified */
s->avctx->pix_fmt = AV_PIX_FMT_NONE;
break;
}
break;
}
return 0;
}
/* get common part for COD and COC segments */
static int get_cox(Jpeg2000DecoderContext *s, Jpeg2000CodingStyle *c)
{
uint8_t byte;
if (s->buf_end - s->buf < 5)
return AVERROR(EINVAL);
c->nreslevels = bytestream_get_byte(&s->buf) + 1; // num of resolution levels - 1
/* compute number of resolution levels to decode */
if (c->nreslevels < s->reduction_factor)
c->nreslevels2decode = 1;
else
c->nreslevels2decode = c->nreslevels - s->reduction_factor;
c->log2_cblk_width = bytestream_get_byte(&s->buf) + 2; // cblk width
c->log2_cblk_height = bytestream_get_byte(&s->buf) + 2; // cblk height
c->cblk_style = bytestream_get_byte(&s->buf);
if (c->cblk_style != 0) { // cblk style
av_log(s->avctx, AV_LOG_ERROR, "no extra cblk styles supported\n");
return -1;
}
c->transform = bytestream_get_byte(&s->buf); // DWT transformation type
/* set integer 9/7 DWT in case of BITEXACT flag */
if ((s->avctx->flags & CODEC_FLAG_BITEXACT) && (c->transform == FF_DWT97))
c->transform = FF_DWT97_INT;
if (c->csty & JPEG2000_CSTY_PREC) {
int i;
for (i = 0; i < c->nreslevels; i++) {
byte = bytestream_get_byte(&s->buf);
c->log2_prec_widths[i] = byte & 0x0F; // precinct PPx
c->log2_prec_heights[i] = (byte >> 4) & 0x0F; // precinct PPy
}
}
return 0;
}
/* get coding parameters for a particular tile or whole image*/
static int get_cod(Jpeg2000DecoderContext *s, Jpeg2000CodingStyle *c,
uint8_t *properties)
{
Jpeg2000CodingStyle tmp;
int compno;
if (s->buf_end - s->buf < 5)
return AVERROR(EINVAL);
tmp.log2_prec_width =
tmp.log2_prec_height = 15;
tmp.csty = bytestream_get_byte(&s->buf);
// get progression order
tmp.prog_order = bytestream_get_byte(&s->buf);
tmp.nlayers = bytestream_get_be16(&s->buf);
tmp.mct = bytestream_get_byte(&s->buf); // multiple component transformation
get_cox(s, &tmp);
for (compno = 0; compno < s->ncomponents; compno++)
if (!(properties[compno] & HAD_COC))
memcpy(c + compno, &tmp, sizeof(tmp));
return 0;
}
/* Get coding parameters for a component in the whole image or a
* particular tile. */
static int get_coc(Jpeg2000DecoderContext *s, Jpeg2000CodingStyle *c,
uint8_t *properties)
{
int compno;
if (s->buf_end - s->buf < 2)
return AVERROR(EINVAL);
compno = bytestream_get_byte(&s->buf);
c += compno;
c->csty = bytestream_get_byte(&s->buf);
get_cox(s, c);
properties[compno] |= HAD_COC;
return 0;
}
/* Get common part for QCD and QCC segments. */
static int get_qcx(Jpeg2000DecoderContext *s, int n, Jpeg2000QuantStyle *q)
{
int i, x;
if (s->buf_end - s->buf < 1)
return AVERROR(EINVAL);
x = bytestream_get_byte(&s->buf); // Sqcd
q->nguardbits = x >> 5;
q->quantsty = x & 0x1f;
if (q->quantsty == JPEG2000_QSTY_NONE) {
n -= 3;
if (s->buf_end - s->buf < n)
return AVERROR(EINVAL);
for (i = 0; i < n; i++)
q->expn[i] = bytestream_get_byte(&s->buf) >> 3;
} else if (q->quantsty == JPEG2000_QSTY_SI) {
if (s->buf_end - s->buf < 2)
return AVERROR(EINVAL);
x = bytestream_get_be16(&s->buf);
q->expn[0] = x >> 11;
q->mant[0] = x & 0x7ff;
for (i = 1; i < 32 * 3; i++) {
int curexpn = FFMAX(0, q->expn[0] - (i - 1) / 3);
q->expn[i] = curexpn;
q->mant[i] = q->mant[0];
}
} else {
n = (n - 3) >> 1;
if (s->buf_end - s->buf < n)
return AVERROR(EINVAL);
for (i = 0; i < n; i++) {
x = bytestream_get_be16(&s->buf);
q->expn[i] = x >> 11;
q->mant[i] = x & 0x7ff;
}
}
return 0;
}
/* Get quantization parameters for a particular tile or a whole image. */
static int get_qcd(Jpeg2000DecoderContext *s, int n, Jpeg2000QuantStyle *q,
uint8_t *properties)
{
Jpeg2000QuantStyle tmp;
int compno;
if (get_qcx(s, n, &tmp))
return -1;
for (compno = 0; compno < s->ncomponents; compno++)
if (!(properties[compno] & HAD_QCC))
memcpy(q + compno, &tmp, sizeof(tmp));
return 0;
}
/* Get quantization parameters for a component in the whole image
* on in a particular tile. */
static int get_qcc(Jpeg2000DecoderContext *s, int n, Jpeg2000QuantStyle *q,
uint8_t *properties)
{
int compno;
if (s->buf_end - s->buf < 1)
return AVERROR(EINVAL);
compno = bytestream_get_byte(&s->buf);
properties[compno] |= HAD_QCC;
return get_qcx(s, n - 1, q + compno);
}
/* Get start of tile segment. */
static uint8_t get_sot(Jpeg2000DecoderContext *s, int n)
{
Jpeg2000TilePart *tp;
uint16_t Isot;
uint32_t Psot;
uint8_t TPsot;
if (s->buf_end - s->buf < 4)
return AVERROR(EINVAL);
Isot = bytestream_get_be16(&s->buf); // Isot
if (Isot) {
av_log(s->avctx, AV_LOG_ERROR,
"Not a DCINEMA JP2K file: more than one tile\n");
return -1;
}
Psot = bytestream_get_be32(&s->buf); // Psot
TPsot = bytestream_get_byte(&s->buf); // TPsot
/* Read TNSot but not used */
bytestream_get_byte(&s->buf); // TNsot
tp = s->tile[s->curtileno].tile_part + TPsot;
tp->tile_index = Isot;
tp->tp_len = Psot;
tp->tp_idx = TPsot;
/* Start of bit stream. Pointer to SOD marker
* Check SOD marker is present. */
if (JPEG2000_SOD == bytestream_get_be16(&s->buf))
tp->tp_start_bstrm = s->buf;
else {
av_log(s->avctx, AV_LOG_ERROR, "SOD marker not found \n");
return -1;
}
/* End address of bit stream =
* start address + (Psot - size of SOT HEADER(n)
* - size of SOT MARKER(2) - size of SOD marker(2) */
tp->tp_end_bstrm = s->buf + (tp->tp_len - n - 4);
// set buffer pointer to end of tile part header
s->buf = tp->tp_end_bstrm;
return 0;
}
/* Tile-part lengths: see ISO 15444-1:2002, section A.7.1
* Used to know the number of tile parts and lengths.
* There may be multiple TLMs in the header.
* TODO: The function is not used for tile-parts management, nor anywhere else.
* It can be useful to allocate memory for tile parts, before managing the SOT
* markers. Parsing the TLM header is needed to increment the input header
* buffer.
* This marker is mandatory for DCI. */
static uint8_t get_tlm(Jpeg2000DecoderContext *s, int n)
{
uint8_t Stlm, ST, SP, tile_tlm, i;
bytestream_get_byte(&s->buf); /* Ztlm: skipped */
Stlm = bytestream_get_byte(&s->buf);
// too complex ? ST = ((Stlm >> 4) & 0x01) + ((Stlm >> 4) & 0x02);
ST = (Stlm >> 4) & 0x03;
// TODO: Manage case of ST = 0b11 --> raise error
SP = (Stlm >> 6) & 0x01;
tile_tlm = (n - 4) / ((SP + 1) * 2 + ST);
for (i = 0; i < tile_tlm; i++) {
switch (ST) {
case 0:
break;
case 1:
bytestream_get_byte(&s->buf);
break;
case 2:
bytestream_get_be16(&s->buf);
break;
case 3:
bytestream_get_be32(&s->buf);
break;
}
if (SP == 0) {
bytestream_get_be16(&s->buf);
} else {
bytestream_get_be32(&s->buf);
}
}
return 0;
}
static int init_tile(Jpeg2000DecoderContext *s, int tileno)
{
int compno;
int tilex = tileno % s->numXtiles;
int tiley = tileno / s->numXtiles;
Jpeg2000Tile *tile = s->tile + tileno;
Jpeg2000CodingStyle *codsty;
Jpeg2000QuantStyle *qntsty;
if (!tile->comp)
return AVERROR(ENOMEM);
/* copy codsty, qnsty to tile. TODO: Is it the best way?
* codsty, qnsty is an array of 4 structs Jpeg2000CodingStyle
* and Jpeg2000QuantStyle */
memcpy(tile->codsty, s->codsty, s->ncomponents * sizeof(*codsty));
memcpy(tile->qntsty, s->qntsty, s->ncomponents * sizeof(*qntsty));
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000Component *comp = tile->comp + compno;
int ret; // global bandno
codsty = tile->codsty + compno;
qntsty = tile->qntsty + compno;
comp->coord_o[0][0] = FFMAX(tilex * s->tile_width + s->tile_offset_x, s->image_offset_x);
comp->coord_o[0][1] = FFMIN((tilex + 1) * s->tile_width + s->tile_offset_x, s->width);
comp->coord_o[1][0] = FFMAX(tiley * s->tile_height + s->tile_offset_y, s->image_offset_y);
comp->coord_o[1][1] = FFMIN((tiley + 1) * s->tile_height + s->tile_offset_y, s->height);
// FIXME: add a dcinema profile check ?
// value is guaranteed by profile (orig=0, 1 tile)
comp->coord[0][0] = 0;
comp->coord[0][1] = s->avctx->width;
comp->coord[1][0] = 0;
comp->coord[1][1] = s->avctx->height;
if (ret = ff_jpeg2000_init_component(comp, codsty, qntsty,
s->cbps[compno], s->cdx[compno],
s->cdy[compno], s->avctx))
return ret;
}
return 0;
}
/* Read the number of coding passes. */
static int getnpasses(Jpeg2000DecoderContext *s)
{
int num;
if (!get_bits(s, 1))
return 1;
if (!get_bits(s, 1))
return 2;
if ((num = get_bits(s, 2)) != 3)
return num < 0 ? num : 3 + num;
if ((num = get_bits(s, 5)) != 31)
return num < 0 ? num : 6 + num;
num = get_bits(s, 7);
return num < 0 ? num : 37 + num;
}
static int getlblockinc(Jpeg2000DecoderContext *s)
{
int res = 0, ret;
while (ret = get_bits(s, 1)) {
if (ret < 0)
return ret;
res++;
}
return res;
}
static int jpeg2000_decode_packet(Jpeg2000DecoderContext *s,
Jpeg2000CodingStyle *codsty,
Jpeg2000ResLevel *rlevel, int precno,
int layno, uint8_t *expn, int numgbits)
{
int bandno, cblkno, ret, nb_code_blocks;
if (!(ret = get_bits(s, 1))) {
jpeg2000_flush(s);
return 0;
} else if (ret < 0)
return ret;
for (bandno = 0; bandno < rlevel->nbands; bandno++) {
Jpeg2000Band *band = rlevel->band + bandno;
Jpeg2000Prec *prec = band->prec + precno;
if (band->coord[0][0] == band->coord[0][1] ||
band->coord[1][0] == band->coord[1][1])
continue;
prec->yi0 = 0;
prec->xi0 = 0;
nb_code_blocks = prec->nb_codeblocks_height *
prec->nb_codeblocks_width;
for (cblkno = 0; cblkno < nb_code_blocks; cblkno++) {
Jpeg2000Cblk *cblk = prec->cblk + cblkno;
int incl, newpasses, llen;
if (cblk->npasses)
incl = get_bits(s, 1);
else
incl = tag_tree_decode(s, prec->cblkincl + cblkno, layno + 1) == layno;
if (!incl)
continue;
else if (incl < 0)
return incl;
if (!cblk->npasses)
cblk->nonzerobits = expn[bandno] + numgbits - 1 -
tag_tree_decode(s, prec->zerobits + cblkno,
100);
if ((newpasses = getnpasses(s)) < 0)
return newpasses;
if ((llen = getlblockinc(s)) < 0)
return llen;
cblk->lblock += llen;
if ((ret = get_bits(s, av_log2(newpasses) + cblk->lblock)) < 0)
return ret;
cblk->lengthinc = ret;
cblk->npasses += newpasses;
}
}
jpeg2000_flush(s);
if (codsty->csty & JPEG2000_CSTY_EPH) {
if (AV_RB16(s->buf) == JPEG2000_EPH)
s->buf += 2;
else
av_log(s->avctx, AV_LOG_ERROR, "EPH marker not found.\n");
}
for (bandno = 0; bandno < rlevel->nbands; bandno++) {
Jpeg2000Band *band = rlevel->band + bandno;
Jpeg2000Prec *prec = band->prec + precno;
nb_code_blocks = prec->nb_codeblocks_height * prec->nb_codeblocks_width;
for (cblkno = 0; cblkno < nb_code_blocks; cblkno++) {
Jpeg2000Cblk *cblk = prec->cblk + cblkno;
if (s->buf_end - s->buf < cblk->lengthinc)
return AVERROR(EINVAL);
bytestream_get_buffer(&s->buf, cblk->data, cblk->lengthinc);
cblk->length += cblk->lengthinc;
cblk->lengthinc = 0;
}
}
return 0;
}
static int jpeg2000_decode_packets(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile)
{
int layno, reslevelno, compno, precno, ok_reslevel;
uint8_t prog_order = tile->codsty[0].prog_order;
uint16_t x;
uint16_t y;
s->bit_index = 8;
switch (prog_order) {
case JPEG2000_PGOD_LRCP:
for (layno = 0; layno < tile->codsty[0].nlayers; layno++) {
ok_reslevel = 1;
for (reslevelno = 0; ok_reslevel; reslevelno++) {
ok_reslevel = 0;
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000CodingStyle *codsty = tile->codsty + compno;
Jpeg2000QuantStyle *qntsty = tile->qntsty + compno;
if (reslevelno < codsty->nreslevels) {
Jpeg2000ResLevel *rlevel = tile->comp[compno].reslevel +
reslevelno;
ok_reslevel = 1;
for (precno = 0; precno < rlevel->num_precincts_x * rlevel->num_precincts_y; precno++)
if (jpeg2000_decode_packet(s,
codsty, rlevel,
precno, layno,
qntsty->expn + (reslevelno ? 3 * (reslevelno - 1) + 1 : 0),
qntsty->nguardbits))
return -1;
}
}
}
}
break;
case JPEG2000_PGOD_CPRL:
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000CodingStyle *codsty = tile->codsty + compno;
Jpeg2000QuantStyle *qntsty = tile->qntsty + compno;
/* Set bit stream buffer address according to tile-part.
* For DCinema one tile-part per component, so can be
* indexed by component. */
s->buf = tile->tile_part[compno].tp_start_bstrm;
/* Position loop (y axis)
* TODO: Automate computing of step 256.
* Fixed here, but to be computed before entering here. */
for (y = 0; y < s->height; y += 256) {
/* Position loop (y axis)
* TODO: automate computing of step 256.
* Fixed here, but to be computed before entering here. */
for (x = 0; x < s->width; x += 256) {
for (reslevelno = 0; reslevelno < codsty->nreslevels; reslevelno++) {
uint16_t prcx, prcy;
uint8_t reducedresno = codsty->nreslevels - 1 -reslevelno; // ==> N_L - r
Jpeg2000ResLevel *rlevel = tile->comp[compno].reslevel + reslevelno;
if (!((y % (1 << (rlevel->log2_prec_height + reducedresno)) == 0) ||
(y == 0))) // TODO: 2nd condition simplified as try0 always =0 for dcinema
continue;
if (!((x % (1 << (rlevel->log2_prec_width + reducedresno)) == 0) ||
(x == 0))) // TODO: 2nd condition simplified as try0 always =0 for dcinema
continue;
// check if a precinct exists
prcx = ff_jpeg2000_ceildivpow2(x, reducedresno) >> rlevel->log2_prec_width;
prcy = ff_jpeg2000_ceildivpow2(y, reducedresno) >> rlevel->log2_prec_height;
precno = prcx + rlevel->num_precincts_x * prcy;
for (layno = 0; layno < tile->codsty[0].nlayers; layno++) {
if (jpeg2000_decode_packet(s, codsty, rlevel,
precno, layno,
qntsty->expn + (reslevelno ? 3 * (reslevelno - 1) + 1 : 0),
qntsty->nguardbits))
return -1;
}
}
}
}
}
break;
default:
break;
}
/* EOC marker reached */
s->buf += 2;
return 0;
}
/* TIER-1 routines */
static void decode_sigpass(Jpeg2000T1Context *t1, int width, int height,
int bpno, int bandno)
{
int mask = 3 << (bpno - 1), y0, x, y;
for (y0 = 0; y0 < height; y0 += 4)
for (x = 0; x < width; x++)
for (y = y0; y < height && y < y0 + 4; y++)
if ((t1->flags[y + 1][x + 1] & JPEG2000_T1_SIG_NB)
&& !(t1->flags[y + 1][x + 1] & (JPEG2000_T1_SIG | JPEG2000_T1_VIS))) {
if (ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states +
ff_jpeg2000_getsigctxno(t1->flags[y + 1][x + 1],
bandno))) {
int xorbit, ctxno = ff_jpeg2000_getsgnctxno(t1->flags[y + 1][x + 1],
&xorbit);
t1->data[y][x] =
(ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + ctxno) ^ xorbit)
? -mask : mask;
ff_jpeg2000_set_significance(t1, x, y,
t1->data[y][x] < 0);
}
t1->flags[y + 1][x + 1] |= JPEG2000_T1_VIS;
}
}
static void decode_refpass(Jpeg2000T1Context *t1, int width, int height,
int bpno)
{
int phalf, nhalf;
int y0, x, y;
phalf = 1 << (bpno - 1);
nhalf = -phalf;
for (y0 = 0; y0 < height; y0 += 4)
for (x = 0; x < width; x++)
for (y = y0; y < height && y < y0 + 4; y++)
if ((t1->flags[y + 1][x + 1] & (JPEG2000_T1_SIG | JPEG2000_T1_VIS)) == JPEG2000_T1_SIG) {
int ctxno = ff_jpeg2000_getrefctxno(t1->flags[y + 1][x + 1]);
int r = ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + ctxno)
? phalf : nhalf;
t1->data[y][x] += t1->data[y][x] < 0 ? -r : r;
t1->flags[y + 1][x + 1] |= JPEG2000_T1_REF;
}
}
static void decode_clnpass(Jpeg2000DecoderContext *s, Jpeg2000T1Context *t1,
int width, int height, int bpno, int bandno,
int seg_symbols)
{
int mask = 3 << (bpno - 1), y0, x, y, runlen, dec;
for (y0 = 0; y0 < height; y0 += 4)
for (x = 0; x < width; x++) {
if (y0 + 3 < height &&
!((t1->flags[y0 + 1][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 2][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 3][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 4][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)))) {
if (!ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_RL))
continue;
runlen = ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + MQC_CX_UNI);
runlen = (runlen << 1) | ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states +
MQC_CX_UNI);
dec = 1;
} else {
runlen = 0;
dec = 0;
}
for (y = y0 + runlen; y < y0 + 4 && y < height; y++) {
if (!dec) {
if (!(t1->flags[y + 1][x + 1] & (JPEG2000_T1_SIG | JPEG2000_T1_VIS)))
dec = ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states +
ff_jpeg2000_getsigctxno(t1->flags[y + 1][x + 1],
bandno));
}
if (dec) {
int xorbit;
int ctxno = ff_jpeg2000_getsgnctxno(t1->flags[y + 1][x + 1],
&xorbit);
t1->data[y][x] = (ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + ctxno) ^
xorbit)
? -mask : mask;
ff_jpeg2000_set_significance(t1, x, y, t1->data[y][x] < 0);
}
dec = 0;
t1->flags[y + 1][x + 1] &= ~JPEG2000_T1_VIS;
}
}
if (seg_symbols) {
int val;
val = ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
if (val != 0xa)
av_log(s->avctx, AV_LOG_ERROR,
"Segmentation symbol value incorrect\n");
}
}
static int decode_cblk(Jpeg2000DecoderContext *s, Jpeg2000CodingStyle *codsty,
Jpeg2000T1Context *t1, Jpeg2000Cblk *cblk,
int width, int height, int bandpos)
{
int passno = cblk->npasses, pass_t = 2, bpno = cblk->nonzerobits - 1, y;
for (y = 0; y < height + 2; y++)
memset(t1->flags[y], 0, (width + 2) * sizeof(width));
for (y = 0; y < height; y++)
memset(t1->data[y], 0, width * sizeof(width));
ff_mqc_initdec(&t1->mqc, cblk->data);
cblk->data[cblk->length] = 0xff;
cblk->data[cblk->length + 1] = 0xff;
while (passno--) {
switch (pass_t) {
case 0:
decode_sigpass(t1, width, height, bpno + 1, bandpos);
break;
case 1:
decode_refpass(t1, width, height, bpno + 1);
break;
case 2:
decode_clnpass(s, t1, width, height, bpno + 1, bandpos,
codsty->cblk_style & JPEG2000_CBLK_SEGSYM);
break;
}
pass_t++;
if (pass_t == 3) {
bpno--;
pass_t = 0;
}
}
return 0;
}
/* TODO: Verify dequantization for lossless case
* comp->data can be float or int
* band->stepsize can be float or int
* depending on the type of DWT transformation.
* see ISO/IEC 15444-1:2002 A.6.1 */
/* Float dequantization of a codeblock.*/
static void dequantization_float(int x, int y, Jpeg2000Cblk *cblk,
Jpeg2000Component *comp,
Jpeg2000T1Context *t1, Jpeg2000Band *band)
{
int i, j, idx;
float *datap = &comp->data[(comp->coord[0][1] - comp->coord[0][0]) * y + x];
for (j = 0; j < (cblk->coord[1][1] - cblk->coord[1][0]); ++j)
for (i = 0; i < (cblk->coord[0][1] - cblk->coord[0][0]); ++i) {
idx = (comp->coord[0][1] - comp->coord[0][0]) * j + i;
datap[idx] = (float)(t1->data[j][i]) * ((float)band->stepsize);
}
return;
}
/* Integer dequantization of a codeblock.*/
static void dequantization_int(int x, int y, Jpeg2000Cblk *cblk,
Jpeg2000Component *comp,
Jpeg2000T1Context *t1, Jpeg2000Band *band)
{
int i, j, idx;
int32_t *datap =
(int32_t *) &comp->data[(comp->coord[0][1] - comp->coord[0][0]) * y + x];
for (j = 0; j < (cblk->coord[1][1] - cblk->coord[1][0]); ++j)
for (i = 0; i < (cblk->coord[0][1] - cblk->coord[0][0]); ++i) {
idx = (comp->coord[0][1] - comp->coord[0][0]) * j + i;
datap[idx] =
((int32_t)(t1->data[j][i]) * ((int32_t)band->stepsize) + (1 << 15)) >> 16;
}
return;
}
/* Inverse ICT parameters in float and integer.
* int value = (float value) * (1<<16) */
static const float f_ict_params[4] = {
1.402f,
0.34413f,
0.71414f,
1.772f
};
static const int i_ict_params[4] = {
91881,
22553,
46802,
116130
};
static int mct_decode(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile)
{
int i, csize = 1;
int ret = 0;
int32_t *src[3], i0, i1, i2;
float *srcf[3], i0f, i1f, i2f;
for (i = 0; i < 3; i++)
if (tile->codsty[0].transform == FF_DWT97)
srcf[i] = tile->comp[i].data;
else
src[i] = (int32_t *)tile->comp[i].data;
for (i = 0; i < 2; i++)
csize *= tile->comp[0].coord[i][1] - tile->comp[0].coord[i][0];
switch (tile->codsty[0].transform) {
case FF_DWT97:
for (i = 0; i < csize; i++) {
i0f = *srcf[0] + (f_ict_params[0] * *srcf[2]);
i1f = *srcf[0] - (f_ict_params[1] * *srcf[1])
- (f_ict_params[2] * *srcf[2]);
i2f = *srcf[0] + (f_ict_params[3] * *srcf[1]);
*srcf[0]++ = i0f;
*srcf[1]++ = i1f;
*srcf[2]++ = i2f;
}
break;
case FF_DWT97_INT:
for (i = 0; i < csize; i++) {
i0 = *src[0] + (((i_ict_params[0] * *src[2]) + (1 << 15)) >> 16);
i1 = *src[0] - (((i_ict_params[1] * *src[1]) + (1 << 15)) >> 16)
- (((i_ict_params[2] * *src[2]) + (1 << 15)) >> 16);
i2 = *src[0] + (((i_ict_params[3] * *src[1]) + (1 << 15)) >> 16);
*src[0]++ = i0;
*src[1]++ = i1;
*src[2]++ = i2;
}
break;
case FF_DWT53:
for (i = 0; i < csize; i++) {
i1 = *src[0] - (*src[2] + *src[1] >> 2);
i0 = i1 + *src[2];
i2 = i1 + *src[1];
*src[0]++ = i0;
*src[1]++ = i1;
*src[2]++ = i2;
}
break;
}
return ret;
}
static int jpeg2000_decode_tile(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile,
AVFrame *picture)
{
int compno, reslevelno, bandno;
int x, y;
uint8_t *line;
Jpeg2000T1Context t1;
/* Loop on tile components */
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000Component *comp = tile->comp + compno;
Jpeg2000CodingStyle *codsty = tile->codsty + compno;
/* Loop on resolution levels */
for (reslevelno = 0; reslevelno < codsty->nreslevels2decode; reslevelno++) {
Jpeg2000ResLevel *rlevel = comp->reslevel + reslevelno;
/* Loop on bands */
for (bandno = 0; bandno < rlevel->nbands; bandno++) {
uint16_t nb_precincts, precno;
Jpeg2000Band *band = rlevel->band + bandno;
int cblkno = 0, bandpos;
bandpos = bandno + (reslevelno > 0);
nb_precincts = rlevel->num_precincts_x * rlevel->num_precincts_y;
/* Loop on precincts */
for (precno = 0; precno < nb_precincts; precno++) {
Jpeg2000Prec *prec = band->prec + precno;
/* Loop on codeblocks */
for (cblkno = 0; cblkno < prec->nb_codeblocks_width * prec->nb_codeblocks_height; cblkno++) {
int x, y;
Jpeg2000Cblk *cblk = prec->cblk + cblkno;
decode_cblk(s, codsty, &t1, cblk,
cblk->coord[0][1] - cblk->coord[0][0],
cblk->coord[1][1] - cblk->coord[1][0],
bandpos);
/* Manage band offsets */
x = cblk->coord[0][0];
y = cblk->coord[1][0];
if ((reslevelno > 0) && ((bandno + 1) & 1)) {
Jpeg2000ResLevel *pres = comp->reslevel + (reslevelno - 1);
x += pres->coord[0][1] - pres->coord[0][0];
}
if ((reslevelno > 0) && ((bandno + 1) & 2)) {
Jpeg2000ResLevel *pres = comp->reslevel + (reslevelno - 1);
y += pres->coord[1][1] - pres->coord[1][0];
}
if (s->avctx->flags & CODEC_FLAG_BITEXACT)
dequantization_int(x, y, cblk, comp, &t1, band);
else
dequantization_float(x, y, cblk, comp, &t1, band);
} /* end cblk */
} /*end prec */
} /* end band */
} /* end reslevel */
/* inverse DWT */
ff_dwt_decode(&comp->dwt, comp->data);
} /*end comp */
/* inverse MCT transformation */
if (tile->codsty[0].mct)
mct_decode(s, tile);
if (s->avctx->pix_fmt == PIX_FMT_BGRA) // RGBA -> BGRA
FFSWAP(float *, tile->comp[0].data, tile->comp[2].data);
if (s->precision <= 8) {
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000Component *comp = tile->comp + compno;
int32_t *datap = (int32_t *)comp->data;
y = tile->comp[compno].coord[1][0] - s->image_offset_y;
line = picture->data[0] + y * picture->linesize[0];
for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) {
uint8_t *dst;
x = tile->comp[compno].coord[0][0] - s->image_offset_x;
dst = line + x * s->ncomponents + compno;
for (; x < tile->comp[compno].coord[0][1] - s->image_offset_x; x += s->cdx[compno]) {
*datap += 1 << (s->cbps[compno] - 1);
if (*datap < 0)
*datap = 0;
else if (*datap >= (1 << s->cbps[compno]))
*datap = (1 << s->cbps[compno]) - 1;
*dst = *datap++;
dst += s->ncomponents;
}
line += picture->linesize[0];
}
}
} else {
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000Component *comp = tile->comp + compno;
float *datap = comp->data;
int32_t *i_datap = (int32_t *) comp->data;
uint16_t *linel;
y = tile->comp[compno].coord[1][0] - s->image_offset_y;
linel = (uint16_t *)picture->data[0] + y * (picture->linesize[0] >> 1);
for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) {
uint16_t *dst;
x = tile->comp[compno].coord[0][0] - s->image_offset_x;
dst = linel + (x * s->ncomponents + compno);
for (; x < s->avctx->width; x += s->cdx[compno]) {
int16_t val;
/* DC level shift and clip see ISO 15444-1:2002 G.1.2 */
if (s->avctx->flags & CODEC_FLAG_BITEXACT)
val = *i_datap + (1 << (s->cbps[compno] - 1));
else
val = lrintf(*datap) + (1 << (s->cbps[compno] - 1));
val = av_clip(val, 0, (1 << s->cbps[compno]) - 1);
/* align 12 bit values in little-endian mode */
*dst = val << 4;
datap++;
i_datap++;
dst += s->ncomponents;
}
linel += picture->linesize[0] >> 1;
}
}
}
return 0;
}
static void jpeg2000_dec_cleanup(Jpeg2000DecoderContext *s)
{
int tileno, compno;
for (tileno = 0; tileno < s->numXtiles * s->numYtiles; tileno++) {
for (compno = 0; compno < s->ncomponents; compno++) {
Jpeg2000Component *comp = s->tile[tileno].comp + compno;
Jpeg2000CodingStyle *codsty = s->tile[tileno].codsty + compno;
ff_jpeg2000_cleanup(comp, codsty);
}
av_freep(&s->tile[tileno].comp);
}
av_freep(&s->tile);
}
static int jpeg2000_read_main_headers(Jpeg2000DecoderContext *s)
{
Jpeg2000CodingStyle *codsty = s->codsty;
Jpeg2000QuantStyle *qntsty = s->qntsty;
uint8_t *properties = s->properties;
for (;;) {
int len, ret = 0;
uint16_t marker;
const uint8_t *oldbuf;
if (s->buf_end - s->buf < 2) {
av_log(s->avctx, AV_LOG_ERROR, "Missing EOC\n");
break;
}
marker = bytestream_get_be16(&s->buf);
oldbuf = s->buf;
if (marker == JPEG2000_EOC)
break;
if (s->buf_end - s->buf < 2)
return AVERROR(EINVAL);
len = bytestream_get_be16(&s->buf);
switch (marker) {
case JPEG2000_SIZ:
ret = get_siz(s);
break;
case JPEG2000_COC:
ret = get_coc(s, codsty, properties);
break;
case JPEG2000_COD:
ret = get_cod(s, codsty, properties);
break;
case JPEG2000_QCC:
ret = get_qcc(s, len, qntsty, properties);
break;
case JPEG2000_QCD:
ret = get_qcd(s, len, qntsty, properties);
break;
case JPEG2000_SOT:
ret = get_sot(s, len);
break;
case JPEG2000_COM:
// the comment is ignored
s->buf += len - 2;
break;
case JPEG2000_TLM:
// Tile-part lengths
ret = get_tlm(s, len);
break;
default:
av_log(s->avctx, AV_LOG_ERROR,
"unsupported marker 0x%.4X at pos 0x%lX\n",
marker, (uint64_t)(s->buf - s->buf_start - 4));
s->buf += len - 2;
break;
}
if (((s->buf - oldbuf != len) && (marker != JPEG2000_SOT)) || ret) {
av_log(s->avctx, AV_LOG_ERROR,
"error during processing marker segment %.4x\n", marker);
return ret ? ret : -1;
}
}
return 0;
}
/* Read bit stream packets --> T2 operation. */
static int jpeg2000_read_bitstream_packets(Jpeg2000DecoderContext *s)
{
int ret = 0;
Jpeg2000Tile *tile = s->tile + s->curtileno;
if (ret = init_tile(s, s->curtileno))
return ret;
if (ret = jpeg2000_decode_packets(s, tile))
return ret;
return 0;
}
static int jp2_find_codestream(Jpeg2000DecoderContext *s)
{
int32_t atom_size;
int found_codestream = 0, search_range = 10;
// Skip JPEG 2000 signature atom.
s->buf += 12;
while (!found_codestream && search_range) {
atom_size = AV_RB32(s->buf);
if (AV_RB32(s->buf + 4) == JP2_CODESTREAM) {
found_codestream = 1;
s->buf += 8;
} else {
s->buf += atom_size;
search_range--;
}
}
if (found_codestream)
return 1;
return 0;
}
static int jpeg2000_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
Jpeg2000DecoderContext *s = avctx->priv_data;
AVFrame *picture = data;
int tileno, ret;
s->avctx = avctx;
s->buf = s->buf_start = avpkt->data;
s->buf_end = s->buf_start + avpkt->size;
s->curtileno = 0; // TODO: only one tile in DCI JP2K. to implement for more tiles
// reduction factor, i.e number of resolution levels to skip
s->reduction_factor = s->lowres;
ff_jpeg2000_init_tier1_luts();
if (s->buf_end - s->buf < 2)
return AVERROR(EINVAL);
// check if the image is in jp2 format
if ((AV_RB32(s->buf) == 12) &&
(AV_RB32(s->buf + 4) == JP2_SIG_TYPE) &&
(AV_RB32(s->buf + 8) == JP2_SIG_VALUE)) {
if (!jp2_find_codestream(s)) {
av_log(avctx, AV_LOG_ERROR,
"couldn't find jpeg2k codestream atom\n");
return -1;
}
}
if (bytestream_get_be16(&s->buf) != JPEG2000_SOC) {
av_log(avctx, AV_LOG_ERROR, "SOC marker not present\n");
return -1;
}
if (ret = jpeg2000_read_main_headers(s))
return ret;
/* get picture buffer */
if ((ret = ff_get_buffer(avctx, picture, 0)) < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_buffer() failed\n");
return ret;
}
picture->pict_type = AV_PICTURE_TYPE_I;
picture->key_frame = 1;
if (ret = jpeg2000_read_bitstream_packets(s))
return ret;
for (tileno = 0; tileno < s->numXtiles * s->numYtiles; tileno++)
if (ret = jpeg2000_decode_tile(s, s->tile + tileno, picture))
return ret;
jpeg2000_dec_cleanup(s);
*got_frame = 1;
return s->buf - s->buf_start;
}
#define OFFSET(x) offsetof(Jpeg2000DecoderContext, x)
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption options[] = {
{ "lowres", "Lower the decoding resolution by a power of two",
OFFSET(lowres), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, JPEG2000_MAX_RESLEVELS - 1, VD },
{ NULL },
};
static const AVProfile profiles[] = {
{ FF_PROFILE_JPEG2000_CSTREAM_RESTRICTION_0, "JPEG 2000 codestream restriction 0" },
{ FF_PROFILE_JPEG2000_CSTREAM_RESTRICTION_1, "JPEG 2000 codestream restriction 1" },
{ FF_PROFILE_JPEG2000_CSTREAM_NO_RESTRICTION, "JPEG 2000 no codestream restrictions" },
{ FF_PROFILE_JPEG2000_DCINEMA_2K, "JPEG 2000 digital cinema 2K" },
{ FF_PROFILE_JPEG2000_DCINEMA_4K, "JPEG 2000 digital cinema 4K" },
{ FF_PROFILE_UNKNOWN },
};
static const AVClass class = {
.class_name = "jpeg2000",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_jpeg2000_decoder = {
.name = "jpeg2000",
.long_name = NULL_IF_CONFIG_SMALL("JPEG 2000"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_JPEG2000,
.priv_data_size = sizeof(Jpeg2000DecoderContext),
.decode = jpeg2000_decode_frame,
.priv_class = &class,
.pix_fmts = (enum PixelFormat[]) { AV_PIX_FMT_XYZ12,
AV_PIX_FMT_GRAY8,
-1 },
.profiles = NULL_IF_CONFIG_SMALL(profiles)
};
/*
* Discrete wavelet transform
* Copyright (c) 2007 Kamil Nowosad
* Copyright (c) 2013 Nicolas Bertrand <nicoinattendu@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Discrete wavelet transform
*/
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "jpeg2000dwt.h"
#include "internal.h"
/* Defines for 9/7 DWT lifting parameters.
* Parameters are in float. */
#define F_LFTG_ALPHA 1.586134342059924f
#define F_LFTG_BETA 0.052980118572961f
#define F_LFTG_GAMMA 0.882911075530934f
#define F_LFTG_DELTA 0.443506852043971f
#define F_LFTG_K 1.230174104914001f
#define F_LFTG_X 1.625732422f
/* FIXME: Why use 1.625732422 instead of 1/F_LFTG_K?
* Incorrect value in JPEG2000 norm.
* see (ISO/IEC 15444:1 (version 2002) F.3.8.2 */
/* Lifting parameters in integer format.
* Computed as param = (float param) * (1 << 16) */
#define I_LFTG_ALPHA 103949
#define I_LFTG_BETA 3472
#define I_LFTG_GAMMA 57862
#define I_LFTG_DELTA 29066
#define I_LFTG_K 80621
#define I_LFTG_X 106544
static inline void extend53(int *p, int i0, int i1)
{
p[i0 - 1] = p[i0 + 1];
p[i1] = p[i1 - 2];
p[i0 - 2] = p[i0 + 2];
p[i1 + 1] = p[i1 - 3];
}
static inline void extend97_float(float *p, int i0, int i1)
{
int i;
for (i = 1; i <= 4; i++) {
p[i0 - i] = p[i0 + i];
p[i1 + i - 1] = p[i1 - i - 1];
}
}
static inline void extend97_int(int32_t *p, int i0, int i1)
{
int i;
for (i = 1; i <= 4; i++) {
p[i0 - i] = p[i0 + i];
p[i1 + i - 1] = p[i1 - i - 1];
}
}
static void sr_1d53(int *p, int i0, int i1)
{
int i;
if (i1 == i0 + 1)
return;
extend53(p, i0, i1);
for (i = i0 / 2; i < i1 / 2 + 1; i++)
p[2 * i] -= (p[2 * i - 1] + p[2 * i + 1] + 2) >> 2;
for (i = i0 / 2; i < i1 / 2; i++)
p[2 * i + 1] += (p[2 * i] + p[2 * i + 2]) >> 1;
}
static void dwt_decode53(DWTContext *s, int *t)
{
int lev;
int w = s->linelen[s->ndeclevels - 1][0];
int32_t *line = s->i_linebuf;
line += 3;
for (lev = 0; lev < s->ndeclevels; lev++) {
int lh = s->linelen[lev][0],
lv = s->linelen[lev][1],
mh = s->mod[lev][0],
mv = s->mod[lev][1],
lp;
int *l;
// HOR_SD
l = line + mh;
for (lp = 0; lp < lv; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mh; i < lh; i += 2, j++)
l[i] = t[w * lp + j];
for (i = 1 - mh; i < lh; i += 2, j++)
l[i] = t[w * lp + j];
sr_1d53(line, mh, mh + lh);
for (i = 0; i < lh; i++)
t[w * lp + i] = l[i];
}
// VER_SD
l = line + mv;
for (lp = 0; lp < lh; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mv; i < lv; i += 2, j++)
l[i] = t[w * j + lp];
for (i = 1 - mv; i < lv; i += 2, j++)
l[i] = t[w * j + lp];
sr_1d53(line, mv, mv + lv);
for (i = 0; i < lv; i++)
t[w * i + lp] = l[i];
}
}
}
static void sr_1d97_float(float *p, int i0, int i1)
{
int i;
if (i1 == i0 + 1)
return;
extend97_float(p, i0, i1);
/*step 1*/
for (i = i0 / 2 - 1; i < i1 / 2 + 2; i++)
p[2 * i] *= F_LFTG_K;
/* step 2*/
for (i = i0 / 2 - 2; i < i1 / 2 + 2; i++)
p[2 * i + 1] *= F_LFTG_X;
/* step 3*/
for (i = i0 / 2 - 1; i < i1 / 2 + 2; i++)
p[2 * i] -= F_LFTG_DELTA * (p[2 * i - 1] + p[2 * i + 1]);
/* step 4 */
for (i = i0 / 2 - 1; i < i1 / 2 + 1; i++)
p[2 * i + 1] -= F_LFTG_GAMMA * (p[2 * i] + p[2 * i + 2]);
/*step 5*/
for (i = i0 / 2; i < i1 / 2 + 1; i++)
p[2 * i] += F_LFTG_BETA * (p[2 * i - 1] + p[2 * i + 1]);
/* step 6 */
for (i = i0 / 2; i < i1 / 2; i++)
p[2 * i + 1] += F_LFTG_ALPHA * (p[2 * i] + p[2 * i + 2]);
}
static void dwt_decode97_float(DWTContext *s, float *t)
{
int lev;
int w = s->linelen[s->ndeclevels - 1][0];
float *line = s->f_linebuf;
float *data = t;
/* position at index O of line range [0-5,w+5] cf. extend function */
line += 5;
for (lev = 0; lev < s->ndeclevels; lev++) {
int lh = s->linelen[lev][0],
lv = s->linelen[lev][1],
mh = s->mod[lev][0],
mv = s->mod[lev][1],
lp;
float *l;
// HOR_SD
l = line + mh;
for (lp = 0; lp < lv; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mh; i < lh; i += 2, j++)
l[i] = data[w * lp + j];
for (i = 1 - mh; i < lh; i += 2, j++)
l[i] = data[w * lp + j];
sr_1d97_float(line, mh, mh + lh);
for (i = 0; i < lh; i++)
data[w * lp + i] = l[i];
}
// VER_SD
l = line + mv;
for (lp = 0; lp < lh; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mv; i < lv; i += 2, j++)
l[i] = data[w * j + lp];
for (i = 1 - mv; i < lv; i += 2, j++)
l[i] = data[w * j + lp];
sr_1d97_float(line, mv, mv + lv);
for (i = 0; i < lv; i++)
data[w * i + lp] = l[i];
}
}
}
static void sr_1d97_int(int32_t *p, int i0, int i1)
{
int i;
if (i1 == i0 + 1)
return;
extend97_int(p, i0, i1);
/*step 1*/
for (i = i0 / 2 - 1; i < i1 / 2 + 2; i++)
p[2 * i] = ((p[2 * i] * I_LFTG_K) + (1 << 15)) >> 16;
/* step 2*/
for (i = i0 / 2 - 2; i < i1 / 2 + 2; i++)
p[2 * i + 1] = ((p[2 * i + 1] * I_LFTG_X) + (1 << 15)) >> 16;
/* step 3*/
for (i = i0 / 2 - 1; i < i1 / 2 + 2; i++)
p[2 * i] -= (I_LFTG_DELTA * (p[2 * i - 1] + p[2 * i + 1]) + (1 << 15)) >> 16;
/* step 4 */
for (i = i0 / 2 - 1; i < i1 / 2 + 1; i++)
p[2 * i + 1] -= (I_LFTG_GAMMA * (p[2 * i] + p[2 * i + 2]) + (1 << 15)) >> 16;
/*step 5*/
for (i = i0 / 2; i < i1 / 2 + 1; i++)
p[2 * i] += (I_LFTG_BETA * (p[2 * i - 1] + p[2 * i + 1]) + (1 << 15)) >> 16;
/* step 6 */
for (i = i0 / 2; i < i1 / 2; i++)
p[2 * i + 1] += (I_LFTG_ALPHA * (p[2 * i] + p[2 * i + 2]) + (1 << 15)) >> 16;
}
static void dwt_decode97_int(DWTContext *s, int32_t *t)
{
int lev;
int w = s->linelen[s->ndeclevels - 1][0];
int32_t *line = s->i_linebuf;
int32_t *data = t;
/* position at index O of line range [0-5,w+5] cf. extend function */
line += 5;
for (lev = 0; lev < s->ndeclevels; lev++) {
int lh = s->linelen[lev][0],
lv = s->linelen[lev][1],
mh = s->mod[lev][0],
mv = s->mod[lev][1],
lp;
int32_t *l;
// HOR_SD
l = line + mh;
for (lp = 0; lp < lv; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mh; i < lh; i += 2, j++)
l[i] = data[w * lp + j];
for (i = 1 - mh; i < lh; i += 2, j++)
l[i] = data[w * lp + j];
sr_1d97_int(line, mh, mh + lh);
for (i = 0; i < lh; i++)
data[w * lp + i] = l[i];
}
// VER_SD
l = line + mv;
for (lp = 0; lp < lh; lp++) {
int i, j = 0;
// copy with interleaving
for (i = mv; i < lv; i += 2, j++)
l[i] = data[w * j + lp];
for (i = 1 - mv; i < lv; i += 2, j++)
l[i] = data[w * j + lp];
sr_1d97_int(line, mv, mv + lv);
for (i = 0; i < lv; i++)
data[w * i + lp] = l[i];
}
}
}
int ff_jpeg2000_dwt_init(DWTContext *s, uint16_t border[2][2],
int decomp_levels, int type)
{
int i, j, lev = decomp_levels, maxlen,
b[2][2];
s->ndeclevels = decomp_levels;
s->type = type;
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
b[i][j] = border[i][j];
maxlen = FFMAX(b[0][1] - b[0][0],
b[1][1] - b[1][0]);
while (--lev >= 0)
for (i = 0; i < 2; i++) {
s->linelen[lev][i] = b[i][1] - b[i][0];
s->mod[lev][i] = b[i][0] & 1;
for (j = 0; j < 2; j++)
b[i][j] = (b[i][j] + 1) >> 1;
}
switch (type) {
case FF_DWT97:
s->f_linebuf = av_malloc((maxlen + 12) * sizeof(*s->f_linebuf));
if (!s->f_linebuf)
return AVERROR(ENOMEM);
break;
case FF_DWT97_INT:
s->i_linebuf = av_malloc((maxlen + 12) * sizeof(*s->i_linebuf));
if (!s->i_linebuf)
return AVERROR(ENOMEM);
break;
case FF_DWT53:
s->i_linebuf = av_malloc((maxlen + 6) * sizeof(*s->i_linebuf));
if (!s->i_linebuf)
return AVERROR(ENOMEM);
break;
default:
return -1;
}
return 0;
}
int ff_dwt_decode(DWTContext *s, void *t)
{
switch (s->type) {
case FF_DWT97:
dwt_decode97_float(s, t);
break;
case FF_DWT97_INT:
dwt_decode97_int(s, t);
break;
case FF_DWT53:
dwt_decode53(s, t);
break;
default:
return -1;
}
return 0;
}
void ff_dwt_destroy(DWTContext *s)
{
av_freep(&s->f_linebuf);
av_freep(&s->i_linebuf);
}
/*
* Discrete wavelet transform
* Copyright (c) 2007 Kamil Nowosad
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_JPEG2000DWT_H
#define AVCODEC_JPEG2000DWT_H
/**
* @file
* Discrete wavelet transform
*/
#include <stdint.h>
#define FF_DWT_MAX_DECLVLS 32 ///< max number of decomposition levels
enum DWTType {
FF_DWT97,
FF_DWT53,
FF_DWT97_INT
};
typedef struct DWTContext {
/// line lengths { horizontal, vertical } in consecutive decomposition levels
uint16_t linelen[FF_DWT_MAX_DECLVLS][2];
uint8_t mod[FF_DWT_MAX_DECLVLS][2]; ///< coordinates (x0, y0) of decomp. levels mod 2
uint8_t ndeclevels; ///< number of decomposition levels
uint8_t type; ///< 0 for 9/7; 1 for 5/3
int32_t *i_linebuf; ///< int buffer used by transform
float *f_linebuf; ///< float buffer used by transform
} DWTContext;
/**
* Initialize DWT.
* @param s DWT context
* @param border coordinates of transformed region {{x0, x1}, {y0, y1}}
* @param decomp_levels number of decomposition levels
* @param type 0 for DWT 9/7; 1 for DWT 5/3
*/
int ff_jpeg2000_dwt_init(DWTContext *s, uint16_t border[2][2],
int decomp_levels, int type);
int ff_dwt_decode(DWTContext *s, void *t);
void ff_dwt_destroy(DWTContext *s);
#endif /* AVCODEC_JPEG2000DWT_H */
/*
* MQ-coder encoder and decoder common functions
* Copyright (c) 2007 Kamil Nowosad
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* MQ-coder common (decoder/encoder) functions
* @file
* @author Kamil Nowosad
*/
#include <string.h>
#include <stdint.h>
#include "mqc.h"
/* MQ coder context state structure */
typedef struct MqcCxState {
uint16_t qe;
uint8_t nmps;
uint8_t nlps;
uint8_t sw;
} MqcCxState;
static const MqcCxState cx_states[47] = {
{ 0x5601, 1, 1, 1 },
{ 0x3401, 2, 6, 0 },
{ 0x1801, 3, 9, 0 },
{ 0x0AC1, 4, 12, 0 },
{ 0x0521, 5, 29, 0 },
{ 0x0221, 38, 33, 0 },
{ 0x5601, 7, 6, 1 },
{ 0x5401, 8, 14, 0 },
{ 0x4801, 9, 14, 0 },
{ 0x3801, 10, 14, 0 },
{ 0x3001, 11, 17, 0 },
{ 0x2401, 12, 18, 0 },
{ 0x1C01, 13, 20, 0 },
{ 0x1601, 29, 21, 0 },
{ 0x5601, 15, 14, 1 },
{ 0x5401, 16, 14, 0 },
{ 0x5101, 17, 15, 0 },
{ 0x4801, 18, 16, 0 },
{ 0x3801, 19, 17, 0 },
{ 0x3401, 20, 18, 0 },
{ 0x3001, 21, 19, 0 },
{ 0x2801, 22, 19, 0 },
{ 0x2401, 23, 20, 0 },
{ 0x2201, 24, 21, 0 },
{ 0x1C01, 25, 22, 0 },
{ 0x1801, 26, 23, 0 },
{ 0x1601, 27, 24, 0 },
{ 0x1401, 28, 25, 0 },
{ 0x1201, 29, 26, 0 },
{ 0x1101, 30, 27, 0 },
{ 0x0AC1, 31, 28, 0 },
{ 0x09C1, 32, 29, 0 },
{ 0x08A1, 33, 30, 0 },
{ 0x0521, 34, 31, 0 },
{ 0x0441, 35, 32, 0 },
{ 0x02A1, 36, 33, 0 },
{ 0x0221, 37, 34, 0 },
{ 0x0141, 38, 35, 0 },
{ 0x0111, 39, 36, 0 },
{ 0x0085, 40, 37, 0 },
{ 0x0049, 41, 38, 0 },
{ 0x0025, 42, 39, 0 },
{ 0x0015, 43, 40, 0 },
{ 0x0009, 44, 41, 0 },
{ 0x0005, 45, 42, 0 },
{ 0x0001, 45, 43, 0 },
{ 0x5601, 46, 46, 0 }
};
uint16_t ff_mqc_qe [2 * 47];
uint8_t ff_mqc_nlps[2 * 47];
uint8_t ff_mqc_nmps[2 * 47];
void ff_mqc_init_contexts(MqcState *mqc)
{
int i;
memset(mqc->cx_states, 0, sizeof(mqc->cx_states));
mqc->cx_states[MQC_CX_UNI] = 2 * 46;
mqc->cx_states[MQC_CX_RL] = 2 * 3;
mqc->cx_states[0] = 2 * 4;
for (i = 0; i < 47; i++) {
ff_mqc_qe[2 * i] =
ff_mqc_qe[2 * i + 1] = cx_states[i].qe;
ff_mqc_nlps[2 * i] = 2 * cx_states[i].nlps + cx_states[i].sw;
ff_mqc_nlps[2 * i + 1] = 2 * cx_states[i].nlps + 1 - cx_states[i].sw;
ff_mqc_nmps[2 * i] = 2 * cx_states[i].nmps;
ff_mqc_nmps[2 * i + 1] = 2 * cx_states[i].nmps + 1;
}
}
/*
* MQ-coder: structures, common and decoder functions
* Copyright (c) 2007 Kamil Nowosad
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_MQC_H
#define AVCODEC_MQC_H
/**
* MQ-coder
* @file
* @author Kamil Nowosad
*/
#include <stdint.h>
#define MQC_CX_UNI 17
#define MQC_CX_RL 18
extern uint16_t ff_mqc_qe[2 * 47];
extern uint8_t ff_mqc_nlps[2 * 47];
extern uint8_t ff_mqc_nmps[2 * 47];
typedef struct MqcState {
uint8_t *bp, *bpstart;
unsigned int a;
unsigned int c;
unsigned int ct;
uint8_t cx_states[19];
} MqcState;
/* decoder */
/**
* Initialize MQ-decoder.
* @param mqc MQ decoder state
* @param bp byte poiter
*/
void ff_mqc_initdec(MqcState *mqc, uint8_t *bp);
/**
* MQ decoder.
* @param mqc MQ decoder state
* @param cxstate Context
* @return Decision (0 ot 1)
*/
int ff_mqc_decode(MqcState *mqc, uint8_t *cxstate);
/* common */
/**
* MQ-coder context initialisations.
* @param mqc MQ-coder context
*/
void ff_mqc_init_contexts(MqcState *mqc);
#endif /* AVCODEC_MQC_H */
/*
* MQ-coder decoder
* Copyright (c) 2007 Kamil Nowosad
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* MQ-coder decoder
* @file
* @author Kamil Nowosad
*/
#include "mqc.h"
static void bytein(MqcState *mqc)
{
if (*mqc->bp == 0xff) {
if (*(mqc->bp + 1) > 0x8f)
mqc->c++;
else {
mqc->bp++;
mqc->c += 2 + 0xfe00 - (*mqc->bp << 9);
}
} else {
mqc->bp++;
mqc->c += 1 + 0xff00 - (*mqc->bp << 8);
}
}
static int exchange(MqcState *mqc, uint8_t *cxstate, int lps)
{
int d;
if ((mqc->a < ff_mqc_qe[*cxstate]) ^ (!lps)) {
if (lps)
mqc->a = ff_mqc_qe[*cxstate];
d = *cxstate & 1;
*cxstate = ff_mqc_nmps[*cxstate];
} else {
if (lps)
mqc->a = ff_mqc_qe[*cxstate];
d = 1 - (*cxstate & 1);
*cxstate = ff_mqc_nlps[*cxstate];
}
// do RENORMD: see ISO/IEC 15444-1:2002 §C.3.3
do {
if (!(mqc->c & 0xff)) {
mqc->c -= 0x100;
bytein(mqc);
}
mqc->a += mqc->a;
mqc->c += mqc->c;
} while (!(mqc->a & 0x8000));
return d;
}
void ff_mqc_initdec(MqcState *mqc, uint8_t *bp)
{
ff_mqc_init_contexts(mqc);
mqc->bp = bp;
mqc->c = (*mqc->bp ^ 0xff) << 16;
bytein(mqc);
mqc->c = mqc->c << 7;
mqc->a = 0x8000;
}
int ff_mqc_decode(MqcState *mqc, uint8_t *cxstate)
{
mqc->a -= ff_mqc_qe[*cxstate];
if ((mqc->c >> 16) < mqc->a) {
if (mqc->a & 0x8000)
return *cxstate & 1;
else
return exchange(mqc, cxstate, 0);
} else {
mqc->c -= mqc->a << 16;
return exchange(mqc, cxstate, 1);
}
}
...@@ -151,6 +151,9 @@ fate-interplay-mve-8bit: CMD = framecrc -i $(SAMPLES)/interplay-mve/interplay-lo ...@@ -151,6 +151,9 @@ fate-interplay-mve-8bit: CMD = framecrc -i $(SAMPLES)/interplay-mve/interplay-lo
FATE_SAMPLES_AVCONV-$(call DEMDEC, IPMOVIE, INTERPLAY_VIDEO) += fate-interplay-mve-16bit FATE_SAMPLES_AVCONV-$(call DEMDEC, IPMOVIE, INTERPLAY_VIDEO) += fate-interplay-mve-16bit
fate-interplay-mve-16bit: CMD = framecrc -i $(SAMPLES)/interplay-mve/descent3-level5-16bit-partial.mve -pix_fmt rgb24 -an fate-interplay-mve-16bit: CMD = framecrc -i $(SAMPLES)/interplay-mve/descent3-level5-16bit-partial.mve -pix_fmt rgb24 -an
FATE_SAMPLES_AVCONV-$(call DEMDEC, MXF, JPEG2000) += fate-jpeg2000-dcinema
fate-jpeg2000-dcinema: CMD = framecrc -flags +bitexact -i $(SAMPLES)/jpeg2000/chiens_dcinema2K.mxf
FATE_SAMPLES_AVCONV-$(call DEMDEC, AVI, KGV1) += fate-kgv1 FATE_SAMPLES_AVCONV-$(call DEMDEC, AVI, KGV1) += fate-kgv1
fate-kgv1: CMD = framecrc -i $(SAMPLES)/kega/kgv1.avi -pix_fmt rgb555le -an fate-kgv1: CMD = framecrc -i $(SAMPLES)/kega/kgv1.avi -pix_fmt rgb555le -an
......
#tb 0: 1/24
0, 0, 0, 1, 12441600, 0xf0de508b
0, 1, 1, 1, 12441600, 0x8e50c249
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment