Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
F
ffmpeg.wasm-core
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Linshizhi
ffmpeg.wasm-core
Commits
c1061cc7
Commit
c1061cc7
authored
Sep 02, 2009
by
Sascha Sommer
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add missing wmapro decoder parts
Originally committed as revision 19752 to
svn://svn.ffmpeg.org/ffmpeg/trunk
parent
ee155011
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1279 additions
and
9 deletions
+1279
-9
Changelog
Changelog
+1
-0
general.texi
doc/general.texi
+1
-0
Makefile
libavcodec/Makefile
+1
-0
allcodecs.c
libavcodec/allcodecs.c
+1
-0
avcodec.h
libavcodec/avcodec.h
+1
-1
wmaprodec.c
libavcodec/wmaprodec.c
+1274
-8
No files found.
Changelog
View file @
c1061cc7
...
@@ -36,6 +36,7 @@ version <next>:
...
@@ -36,6 +36,7 @@ version <next>:
- TwinVQ decoder
- TwinVQ decoder
- Bluray (PGS) subtitle decoder
- Bluray (PGS) subtitle decoder
- LPCM support in MPEG-TS (HDMV RID as found on Blu-ray disks)
- LPCM support in MPEG-TS (HDMV RID as found on Blu-ray disks)
- Wmapro decoder
...
...
doc/general.texi
View file @
c1061cc7
...
@@ -621,6 +621,7 @@ following image formats are supported:
...
@@ -621,6 +621,7 @@ following image formats are supported:
@item Westwood Audio (SND1) @tab @tab X
@item Westwood Audio (SND1) @tab @tab X
@item Windows Media Audio 1 @tab X @tab X
@item Windows Media Audio 1 @tab X @tab X
@item Windows Media Audio 2 @tab X @tab X
@item Windows Media Audio 2 @tab X @tab X
@item Windows Media Audio Pro @tab @tab X
@end multitable
@end multitable
@code
{
X
}
means that encoding (resp. decoding) is supported.
@code
{
X
}
means that encoding (resp. decoding) is supported.
...
...
libavcodec/Makefile
View file @
c1061cc7
...
@@ -249,6 +249,7 @@ OBJS-$(CONFIG_VP5_DECODER) += vp5.o vp56.o vp56data.o vp3dsp.o
...
@@ -249,6 +249,7 @@ OBJS-$(CONFIG_VP5_DECODER) += vp5.o vp56.o vp56data.o vp3dsp.o
OBJS-$(CONFIG_VP6_DECODER)
+=
vp6.o
vp56.o
vp56data.o
vp3dsp.o
vp6dsp.o
huffman.o
OBJS-$(CONFIG_VP6_DECODER)
+=
vp6.o
vp56.o
vp56data.o
vp3dsp.o
vp6dsp.o
huffman.o
OBJS-$(CONFIG_VQA_DECODER)
+=
vqavideo.o
OBJS-$(CONFIG_VQA_DECODER)
+=
vqavideo.o
OBJS-$(CONFIG_WAVPACK_DECODER)
+=
wavpack.o
OBJS-$(CONFIG_WAVPACK_DECODER)
+=
wavpack.o
OBJS-$(CONFIG_WMAPRO_DECODER)
+=
wmaprodec.o
wma.o
OBJS-$(CONFIG_WMAV1_DECODER)
+=
wmadec.o
wma.o
OBJS-$(CONFIG_WMAV1_DECODER)
+=
wmadec.o
wma.o
OBJS-$(CONFIG_WMAV1_ENCODER)
+=
wmaenc.o
wma.o
OBJS-$(CONFIG_WMAV1_ENCODER)
+=
wmaenc.o
wma.o
OBJS-$(CONFIG_WMAV2_DECODER)
+=
wmadec.o
wma.o
OBJS-$(CONFIG_WMAV2_DECODER)
+=
wmadec.o
wma.o
...
...
libavcodec/allcodecs.c
View file @
c1061cc7
...
@@ -232,6 +232,7 @@ void avcodec_register_all(void)
...
@@ -232,6 +232,7 @@ void avcodec_register_all(void)
REGISTER_DECODER
(
VMDAUDIO
,
vmdaudio
);
REGISTER_DECODER
(
VMDAUDIO
,
vmdaudio
);
REGISTER_ENCDEC
(
VORBIS
,
vorbis
);
REGISTER_ENCDEC
(
VORBIS
,
vorbis
);
REGISTER_DECODER
(
WAVPACK
,
wavpack
);
REGISTER_DECODER
(
WAVPACK
,
wavpack
);
REGISTER_DECODER
(
WMAPRO
,
wmapro
);
REGISTER_ENCDEC
(
WMAV1
,
wmav1
);
REGISTER_ENCDEC
(
WMAV1
,
wmav1
);
REGISTER_ENCDEC
(
WMAV2
,
wmav2
);
REGISTER_ENCDEC
(
WMAV2
,
wmav2
);
REGISTER_DECODER
(
WS_SND1
,
ws_snd1
);
REGISTER_DECODER
(
WS_SND1
,
ws_snd1
);
...
...
libavcodec/avcodec.h
View file @
c1061cc7
...
@@ -30,7 +30,7 @@
...
@@ -30,7 +30,7 @@
#include "libavutil/avutil.h"
#include "libavutil/avutil.h"
#define LIBAVCODEC_VERSION_MAJOR 52
#define LIBAVCODEC_VERSION_MAJOR 52
#define LIBAVCODEC_VERSION_MINOR 3
4
#define LIBAVCODEC_VERSION_MINOR 3
5
#define LIBAVCODEC_VERSION_MICRO 0
#define LIBAVCODEC_VERSION_MICRO 0
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
...
...
libavcodec/wmaprodec.c
View file @
c1061cc7
...
@@ -86,6 +86,158 @@
...
@@ -86,6 +86,158 @@
* subframe in order to reconstruct the output samples.
* subframe in order to reconstruct the output samples.
*/
*/
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "put_bits.h"
#include "wmaprodata.h"
#include "dsputil.h"
#include "wma.h"
/** current decoder limitations */
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
#define MAX_BANDS 29 ///< max number of scale factor bands
#define MAX_FRAMESIZE 16384 ///< maximum compressed frame size
#define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes
#define VLCBITS 9
#define SCALEVLCBITS 8
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
static
VLC
sf_vlc
;
///< scale factor DPCM vlc
static
VLC
sf_rl_vlc
;
///< scale factor run length vlc
static
VLC
vec4_vlc
;
///< 4 coefficients per symbol
static
VLC
vec2_vlc
;
///< 2 coefficients per symbol
static
VLC
vec1_vlc
;
///< 1 coefficient per symbol
static
VLC
coef_vlc
[
2
];
///< coefficient run length vlc codes
static
float
sin64
[
33
];
///< sinus table for decorrelation
/**
* @brief frame specific decoder context for a single channel
*/
typedef
struct
{
int16_t
prev_block_len
;
///< length of the previous block
uint8_t
transmit_coefs
;
uint8_t
num_subframes
;
uint16_t
subframe_len
[
MAX_SUBFRAMES
];
///< subframe length in samples
uint16_t
subframe_offset
[
MAX_SUBFRAMES
];
///< subframe positions in the current frame
uint8_t
cur_subframe
;
///< current subframe number
uint16_t
decoded_samples
;
///< number of already processed samples
uint8_t
grouped
;
///< channel is part of a group
int
quant_step
;
///< quantization step for the current subframe
int8_t
reuse_sf
;
///< share scale factors between subframes
int8_t
scale_factor_step
;
///< scaling step for the current subframe
int
max_scale_factor
;
///< maximum scale factor for the current subframe
int
scale_factors
[
MAX_BANDS
];
///< scale factor values for the current subframe
int
saved_scale_factors
[
MAX_BANDS
];
///< scale factors from a previous subframe
uint8_t
table_idx
;
///< index in sf_offsets for the scale factor reference block
float
*
coeffs
;
///< pointer to the subframe decode buffer
DECLARE_ALIGNED_16
(
float
,
out
[
WMAPRO_BLOCK_MAX_SIZE
+
WMAPRO_BLOCK_MAX_SIZE
/
2
]);
///< output buffer
}
WMAProChannelCtx
;
/**
* @brief channel group for channel transformations
*/
typedef
struct
{
uint8_t
num_channels
;
///< number of channels in the group
int8_t
transform
;
///< transform on / off
int8_t
transform_band
[
MAX_BANDS
];
///< controls if the transform is enabled for a certain band
float
decorrelation_matrix
[
WMAPRO_MAX_CHANNELS
*
WMAPRO_MAX_CHANNELS
];
float
*
channel_data
[
WMAPRO_MAX_CHANNELS
];
///< transformation coefficients
}
WMAProChannelGrp
;
/**
* @brief main decoder context
*/
typedef
struct
WMAProDecodeCtx
{
/* generic decoder variables */
AVCodecContext
*
avctx
;
///< codec context for av_log
DSPContext
dsp
;
///< accelerated DSP functions
uint8_t
frame_data
[
MAX_FRAMESIZE
+
FF_INPUT_BUFFER_PADDING_SIZE
];
///< compressed frame data
PutBitContext
pb
;
///< context for filling the frame_data buffer
MDCTContext
mdct_ctx
[
WMAPRO_BLOCK_SIZES
];
///< MDCT context per block size
DECLARE_ALIGNED_16
(
float
,
tmp
[
WMAPRO_BLOCK_MAX_SIZE
]);
///< IMDCT output buffer
float
*
windows
[
WMAPRO_BLOCK_SIZES
];
///< windows for the different block sizes
/* frame size dependent frame information (set during initialization) */
uint32_t
decode_flags
;
///< used compression features
uint8_t
len_prefix
;
///< frame is prefixed with its length
uint8_t
dynamic_range_compression
;
///< frame contains DRC data
uint8_t
bits_per_sample
;
///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
uint16_t
samples_per_frame
;
///< number of samples to output
uint16_t
log2_frame_size
;
int8_t
num_channels
;
///< number of channels in the stream (same as AVCodecContext.num_channels)
int8_t
lfe_channel
;
///< lfe channel index
uint8_t
max_num_subframes
;
uint8_t
subframe_len_bits
;
///< number of bits used for the subframe length
uint8_t
max_subframe_len_bit
;
///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
uint16_t
min_samples_per_subframe
;
int8_t
num_sfb
[
WMAPRO_BLOCK_SIZES
];
///< scale factor bands per block size
int16_t
sfb_offsets
[
WMAPRO_BLOCK_SIZES
][
MAX_BANDS
];
///< scale factor band offsets (multiples of 4)
int8_t
sf_offsets
[
WMAPRO_BLOCK_SIZES
][
WMAPRO_BLOCK_SIZES
][
MAX_BANDS
];
///< scale factor resample matrix
int16_t
subwoofer_cutoffs
[
WMAPRO_BLOCK_SIZES
];
///< subwoofer cutoff values
/* packet decode state */
uint8_t
packet_sequence_number
;
///< current packet number
int
num_saved_bits
;
///< saved number of bits
int
frame_offset
;
///< frame offset in the bit reservoir
int
subframe_offset
;
///< subframe offset in the bit reservoir
uint8_t
packet_loss
;
///< set in case of bitstream error
/* frame decode state */
uint32_t
frame_num
;
///< current frame number (not used for decoding)
GetBitContext
gb
;
///< bitstream reader context
int
buf_bit_size
;
///< buffer size in bits
float
*
samples
;
///< current samplebuffer pointer
float
*
samples_end
;
///< maximum samplebuffer pointer
uint8_t
drc_gain
;
///< gain for the DRC tool
int8_t
skip_frame
;
///< skip output step
int8_t
parsed_all_subframes
;
///< all subframes decoded?
/* subframe/block decode state */
int16_t
subframe_len
;
///< current subframe length
int8_t
channels_for_cur_subframe
;
///< number of channels that contain the subframe
int8_t
channel_indexes_for_cur_subframe
[
WMAPRO_MAX_CHANNELS
];
int8_t
num_bands
;
///< number of scale factor bands
int16_t
*
cur_sfb_offsets
;
///< sfb offsets for the current block
uint8_t
table_idx
;
///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
int8_t
esc_len
;
///< length of escaped coefficients
uint8_t
num_chgroups
;
///< number of channel groups
WMAProChannelGrp
chgroup
[
WMAPRO_MAX_CHANNELS
];
///< channel group information
WMAProChannelCtx
channel
[
WMAPRO_MAX_CHANNELS
];
///< per channel data
}
WMAProDecodeCtx
;
/**
*@brief helper function to print the most important members of the context
*@param s context
*/
static
void
av_cold
dump_context
(
WMAProDecodeCtx
*
s
)
{
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
PRINT
(
"ed sample bit depth"
,
s
->
bits_per_sample
);
PRINT_HEX
(
"ed decode flags"
,
s
->
decode_flags
);
PRINT
(
"samples per frame"
,
s
->
samples_per_frame
);
PRINT
(
"log2 frame size"
,
s
->
log2_frame_size
);
PRINT
(
"max num subframes"
,
s
->
max_num_subframes
);
PRINT
(
"len prefix"
,
s
->
len_prefix
);
PRINT
(
"num channels"
,
s
->
num_channels
);
}
/**
/**
*@brief Uninitialize the decoder and free all resources.
*@brief Uninitialize the decoder and free all resources.
*@param avctx codec context
*@param avctx codec context
...
@@ -93,7 +245,7 @@
...
@@ -93,7 +245,7 @@
*/
*/
static
av_cold
int
decode_end
(
AVCodecContext
*
avctx
)
static
av_cold
int
decode_end
(
AVCodecContext
*
avctx
)
{
{
WMA
3DecodeContext
*
s
=
avctx
->
priv_data
;
WMA
ProDecodeCtx
*
s
=
avctx
->
priv_data
;
int
i
;
int
i
;
for
(
i
=
0
;
i
<
WMAPRO_BLOCK_SIZES
;
i
++
)
for
(
i
=
0
;
i
<
WMAPRO_BLOCK_SIZES
;
i
++
)
...
@@ -102,19 +254,352 @@ static av_cold int decode_end(AVCodecContext *avctx)
...
@@ -102,19 +254,352 @@ static av_cold int decode_end(AVCodecContext *avctx)
return
0
;
return
0
;
}
}
/**
*@brief Initialize the decoder.
*@param avctx codec context
*@return 0 on success, -1 otherwise
*/
static
av_cold
int
decode_init
(
AVCodecContext
*
avctx
)
{
WMAProDecodeCtx
*
s
=
avctx
->
priv_data
;
uint8_t
*
edata_ptr
=
avctx
->
extradata
;
unsigned
int
channel_mask
;
int
i
;
int
log2_max_num_subframes
;
int
num_possible_block_sizes
;
s
->
avctx
=
avctx
;
dsputil_init
(
&
s
->
dsp
,
avctx
);
init_put_bits
(
&
s
->
pb
,
s
->
frame_data
,
MAX_FRAMESIZE
);
avctx
->
sample_fmt
=
SAMPLE_FMT_FLT
;
if
(
avctx
->
extradata_size
>=
18
)
{
s
->
decode_flags
=
AV_RL16
(
edata_ptr
+
14
);
channel_mask
=
AV_RL32
(
edata_ptr
+
2
);
s
->
bits_per_sample
=
AV_RL16
(
edata_ptr
);
/** dump the extradata */
for
(
i
=
0
;
i
<
avctx
->
extradata_size
;
i
++
)
dprintf
(
avctx
,
"[%x] "
,
avctx
->
extradata
[
i
]);
dprintf
(
avctx
,
"
\n
"
);
}
else
{
av_log_ask_for_sample
(
avctx
,
"Unknown extradata size
\n
"
);
return
AVERROR_INVALIDDATA
;
}
/** generic init */
s
->
log2_frame_size
=
av_log2
(
avctx
->
block_align
)
+
4
;
/** frame info */
s
->
skip_frame
=
1
;
/** skip first frame */
s
->
packet_loss
=
1
;
s
->
len_prefix
=
(
s
->
decode_flags
&
0x40
);
if
(
!
s
->
len_prefix
)
{
av_log_ask_for_sample
(
avctx
,
"no length prefix
\n
"
);
return
AVERROR_INVALIDDATA
;
}
/** get frame len */
s
->
samples_per_frame
=
1
<<
ff_wma_get_frame_len_bits
(
avctx
->
sample_rate
,
3
,
s
->
decode_flags
);
/** init previous block len */
for
(
i
=
0
;
i
<
avctx
->
channels
;
i
++
)
s
->
channel
[
i
].
prev_block_len
=
s
->
samples_per_frame
;
/** subframe info */
log2_max_num_subframes
=
((
s
->
decode_flags
&
0x38
)
>>
3
);
s
->
max_num_subframes
=
1
<<
log2_max_num_subframes
;
if
(
s
->
max_num_subframes
==
16
)
s
->
max_subframe_len_bit
=
1
;
s
->
subframe_len_bits
=
av_log2
(
log2_max_num_subframes
)
+
1
;
num_possible_block_sizes
=
log2_max_num_subframes
+
1
;
s
->
min_samples_per_subframe
=
s
->
samples_per_frame
/
s
->
max_num_subframes
;
s
->
dynamic_range_compression
=
(
s
->
decode_flags
&
0x80
);
if
(
s
->
max_num_subframes
>
MAX_SUBFRAMES
)
{
av_log
(
avctx
,
AV_LOG_ERROR
,
"invalid number of subframes %i
\n
"
,
s
->
max_num_subframes
);
return
AVERROR_INVALIDDATA
;
}
s
->
num_channels
=
avctx
->
channels
;
/** extract lfe channel position */
s
->
lfe_channel
=
-
1
;
if
(
channel_mask
&
8
)
{
unsigned
int
mask
;
for
(
mask
=
1
;
mask
<
16
;
mask
<<=
1
)
{
if
(
channel_mask
&
mask
)
++
s
->
lfe_channel
;
}
}
if
(
s
->
num_channels
<
0
||
s
->
num_channels
>
WMAPRO_MAX_CHANNELS
)
{
av_log_ask_for_sample
(
avctx
,
"invalid number of channels
\n
"
);
return
AVERROR_NOTSUPP
;
}
INIT_VLC_STATIC
(
&
sf_vlc
,
SCALEVLCBITS
,
HUFF_SCALE_SIZE
,
scale_huffbits
,
1
,
1
,
scale_huffcodes
,
2
,
2
,
616
);
INIT_VLC_STATIC
(
&
sf_rl_vlc
,
VLCBITS
,
HUFF_SCALE_RL_SIZE
,
scale_rl_huffbits
,
1
,
1
,
scale_rl_huffcodes
,
4
,
4
,
1406
);
INIT_VLC_STATIC
(
&
coef_vlc
[
0
],
VLCBITS
,
HUFF_COEF0_SIZE
,
coef0_huffbits
,
1
,
1
,
coef0_huffcodes
,
4
,
4
,
2108
);
INIT_VLC_STATIC
(
&
coef_vlc
[
1
],
VLCBITS
,
HUFF_COEF1_SIZE
,
coef1_huffbits
,
1
,
1
,
coef1_huffcodes
,
4
,
4
,
3912
);
INIT_VLC_STATIC
(
&
vec4_vlc
,
VLCBITS
,
HUFF_VEC4_SIZE
,
vec4_huffbits
,
1
,
1
,
vec4_huffcodes
,
2
,
2
,
604
);
INIT_VLC_STATIC
(
&
vec2_vlc
,
VLCBITS
,
HUFF_VEC2_SIZE
,
vec2_huffbits
,
1
,
1
,
vec2_huffcodes
,
2
,
2
,
562
);
INIT_VLC_STATIC
(
&
vec1_vlc
,
VLCBITS
,
HUFF_VEC1_SIZE
,
vec1_huffbits
,
1
,
1
,
vec1_huffcodes
,
2
,
2
,
562
);
/** calculate number of scale factor bands and their offsets
for every possible block size */
for
(
i
=
0
;
i
<
num_possible_block_sizes
;
i
++
)
{
int
subframe_len
=
s
->
samples_per_frame
>>
i
;
int
x
;
int
band
=
1
;
s
->
sfb_offsets
[
i
][
0
]
=
0
;
for
(
x
=
0
;
x
<
MAX_BANDS
-
1
&&
s
->
sfb_offsets
[
i
][
band
-
1
]
<
subframe_len
;
x
++
)
{
int
offset
=
(
subframe_len
*
2
*
critical_freq
[
x
])
/
s
->
avctx
->
sample_rate
+
2
;
offset
&=
~
3
;
if
(
offset
>
s
->
sfb_offsets
[
i
][
band
-
1
]
)
s
->
sfb_offsets
[
i
][
band
++
]
=
offset
;
}
s
->
sfb_offsets
[
i
][
band
-
1
]
=
subframe_len
;
s
->
num_sfb
[
i
]
=
band
-
1
;
}
/** Scale factors can be shared between blocks of different size
as every block has a different scale factor band layout.
The matrix sf_offsets is needed to find the correct scale factor.
*/
for
(
i
=
0
;
i
<
num_possible_block_sizes
;
i
++
)
{
int
b
;
for
(
b
=
0
;
b
<
s
->
num_sfb
[
i
];
b
++
)
{
int
x
;
int
offset
=
((
s
->
sfb_offsets
[
i
][
b
]
+
s
->
sfb_offsets
[
i
][
b
+
1
]
-
1
)
<<
i
)
>>
1
;
for
(
x
=
0
;
x
<
num_possible_block_sizes
;
x
++
)
{
int
v
=
0
;
while
(
s
->
sfb_offsets
[
x
][
v
+
1
]
<<
x
<
offset
)
++
v
;
s
->
sf_offsets
[
i
][
x
][
b
]
=
v
;
}
}
}
/** init MDCT, FIXME: only init needed sizes */
for
(
i
=
0
;
i
<
WMAPRO_BLOCK_SIZES
;
i
++
)
ff_mdct_init
(
&
s
->
mdct_ctx
[
i
],
BLOCK_MIN_BITS
+
1
+
i
,
1
,
1
.
0
/
(
1
<<
(
BLOCK_MIN_BITS
+
i
-
1
))
/
(
1
<<
(
s
->
bits_per_sample
-
1
)));
/** init MDCT windows: simple sinus window */
for
(
i
=
0
;
i
<
WMAPRO_BLOCK_SIZES
;
i
++
)
{
const
int
n
=
1
<<
(
WMAPRO_BLOCK_MAX_BITS
-
i
);
const
int
win_idx
=
WMAPRO_BLOCK_MAX_BITS
-
i
-
7
;
ff_sine_window_init
(
ff_sine_windows
[
win_idx
],
n
);
s
->
windows
[
WMAPRO_BLOCK_SIZES
-
i
-
1
]
=
ff_sine_windows
[
win_idx
];
}
/** calculate subwoofer cutoff values */
for
(
i
=
0
;
i
<
num_possible_block_sizes
;
i
++
)
{
int
block_size
=
s
->
samples_per_frame
>>
i
;
int
cutoff
=
(
440
*
block_size
+
3
*
(
s
->
avctx
->
sample_rate
>>
1
)
-
1
)
/
s
->
avctx
->
sample_rate
;
s
->
subwoofer_cutoffs
[
i
]
=
av_clip
(
cutoff
,
4
,
block_size
);
}
/** calculate sine values for the decorrelation matrix */
for
(
i
=
0
;
i
<
33
;
i
++
)
sin64
[
i
]
=
sin
(
i
*
M_PI
/
64
.
0
);
if
(
avctx
->
debug
&
FF_DEBUG_BITSTREAM
)
dump_context
(
s
);
avctx
->
channel_layout
=
channel_mask
;
return
0
;
}
/**
*@brief Decode the subframe length.
*@param s context
*@param offset sample offset in the frame
*@return decoded subframe length on success, < 0 in case of an error
*/
static
int
decode_subframe_length
(
WMAProDecodeCtx
*
s
,
int
offset
)
{
int
frame_len_shift
=
0
;
int
subframe_len
;
/** no need to read from the bitstream when only one length is possible */
if
(
offset
==
s
->
samples_per_frame
-
s
->
min_samples_per_subframe
)
return
s
->
min_samples_per_subframe
;
/** 1 bit indicates if the subframe is of maximum length */
if
(
s
->
max_subframe_len_bit
)
{
if
(
get_bits1
(
&
s
->
gb
))
frame_len_shift
=
1
+
get_bits
(
&
s
->
gb
,
s
->
subframe_len_bits
-
1
);
}
else
frame_len_shift
=
get_bits
(
&
s
->
gb
,
s
->
subframe_len_bits
);
subframe_len
=
s
->
samples_per_frame
>>
frame_len_shift
;
/** sanity check the length */
if
(
subframe_len
<
s
->
min_samples_per_subframe
||
subframe_len
>
s
->
samples_per_frame
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: subframe_len %i
\n
"
,
subframe_len
);
return
AVERROR_INVALIDDATA
;
}
return
subframe_len
;
}
/**
*@brief Decode how the data in the frame is split into subframes.
* Every WMA frame contains the encoded data for a fixed number of
* samples per channel. The data for every channel might be split
* into several subframes. This function will reconstruct the list of
* subframes for every channel.
*
* If the subframes are not evenly split, the algorithm estimates the
* channels with the lowest number of total samples.
* Afterwards, for each of these channels a bit is read from the
* bitstream that indicates if the channel contains a subframe with the
* next subframe size that is going to be read from the bitstream or not.
* If a channel contains such a subframe, the subframe size gets added to
* the channel's subframe list.
* The algorithm repeats these steps until the frame is properly divided
* between the individual channels.
*
*@param s context
*@return 0 on success, < 0 in case of an error
*/
static
int
decode_tilehdr
(
WMAProDecodeCtx
*
s
)
{
uint16_t
num_samples
[
WMAPRO_MAX_CHANNELS
];
/** sum of samples for all currently known subframes of a channel */
uint8_t
contains_subframe
[
WMAPRO_MAX_CHANNELS
];
/** flag indicating if a channel contains the current subframe */
int
channels_for_cur_subframe
=
s
->
num_channels
;
/** number of channels that contain the current subframe */
int
fixed_channel_layout
=
0
;
/** flag indicating that all channels use the same subframe offsets and sizes */
int
min_channel_len
=
0
;
/** smallest sum of samples (channels with this length will be processed first) */
int
c
;
/* Should never consume more than 3073 bits (256 iterations for the
* while loop when always the minimum amount of 128 samples is substracted
* from missing samples in the 8 channel case).
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
*/
/** reset tiling information */
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
s
->
channel
[
c
].
num_subframes
=
0
;
memset
(
num_samples
,
0
,
sizeof
(
num_samples
));
if
(
s
->
max_num_subframes
==
1
||
get_bits1
(
&
s
->
gb
))
fixed_channel_layout
=
1
;
/** loop until the frame data is split between the subframes */
do
{
int
subframe_len
;
/** check which channels contain the subframe */
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
if
(
num_samples
[
c
]
==
min_channel_len
)
{
if
(
fixed_channel_layout
||
channels_for_cur_subframe
==
1
||
(
min_channel_len
==
s
->
samples_per_frame
-
s
->
min_samples_per_subframe
))
contains_subframe
[
c
]
=
1
;
else
contains_subframe
[
c
]
=
get_bits1
(
&
s
->
gb
);
}
else
contains_subframe
[
c
]
=
0
;
}
/** get subframe length, subframe_len == 0 is not allowed */
if
((
subframe_len
=
decode_subframe_length
(
s
,
min_channel_len
))
<=
0
)
return
AVERROR_INVALIDDATA
;
/** add subframes to the individual channels and find new min_channel_len */
min_channel_len
+=
subframe_len
;
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
WMAProChannelCtx
*
chan
=
&
s
->
channel
[
c
];
if
(
contains_subframe
[
c
])
{
if
(
chan
->
num_subframes
>=
MAX_SUBFRAMES
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: num subframes > 31
\n
"
);
return
AVERROR_INVALIDDATA
;
}
chan
->
subframe_len
[
chan
->
num_subframes
]
=
subframe_len
;
num_samples
[
c
]
+=
subframe_len
;
++
chan
->
num_subframes
;
if
(
num_samples
[
c
]
>
s
->
samples_per_frame
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: "
"channel len > samples_per_frame
\n
"
);
return
AVERROR_INVALIDDATA
;
}
}
else
if
(
num_samples
[
c
]
<=
min_channel_len
)
{
if
(
num_samples
[
c
]
<
min_channel_len
)
{
channels_for_cur_subframe
=
0
;
min_channel_len
=
num_samples
[
c
];
}
++
channels_for_cur_subframe
;
}
}
}
while
(
min_channel_len
<
s
->
samples_per_frame
);
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
int
i
;
int
offset
=
0
;
for
(
i
=
0
;
i
<
s
->
channel
[
c
].
num_subframes
;
i
++
)
{
dprintf
(
s
->
avctx
,
"frame[%i] channel[%i] subframe[%i]"
" len %i
\n
"
,
s
->
frame_num
,
c
,
i
,
s
->
channel
[
c
].
subframe_len
[
i
]);
s
->
channel
[
c
].
subframe_offset
[
i
]
=
offset
;
offset
+=
s
->
channel
[
c
].
subframe_len
[
i
];
}
}
return
0
;
}
/**
/**
*@brief Calculate a decorrelation matrix from the bitstream parameters.
*@brief Calculate a decorrelation matrix from the bitstream parameters.
*@param s codec context
*@param s codec context
*@param chgroup channel group for which the matrix needs to be calculated
*@param chgroup channel group for which the matrix needs to be calculated
*/
*/
static
void
decode_decorrelation_matrix
(
WMA
3DecodeContext
*
s
,
static
void
decode_decorrelation_matrix
(
WMA
ProDecodeCtx
*
s
,
WMA
3ChannelGrou
p
*
chgroup
)
WMA
ProChannelGr
p
*
chgroup
)
{
{
int
i
;
int
i
;
int
offset
=
0
;
int
offset
=
0
;
int8_t
rotation_offset
[
WMAPRO_MAX_CHANNELS
*
WMAPRO_MAX_CHANNELS
];
int8_t
rotation_offset
[
WMAPRO_MAX_CHANNELS
*
WMAPRO_MAX_CHANNELS
];
memset
(
chgroup
->
decorrelation_matrix
,
0
,
memset
(
chgroup
->
decorrelation_matrix
,
0
,
s
->
num_channels
*
s
izeof
(
float
)
*
s
->
num_channels
*
s
->
num_channels
);
s
->
num_channels
*
sizeof
(
*
chgroup
->
decorrelation_matrix
)
);
for
(
i
=
0
;
i
<
chgroup
->
num_channels
*
(
chgroup
->
num_channels
-
1
)
>>
1
;
i
++
)
for
(
i
=
0
;
i
<
chgroup
->
num_channels
*
(
chgroup
->
num_channels
-
1
)
>>
1
;
i
++
)
rotation_offset
[
i
]
=
get_bits
(
&
s
->
gb
,
6
);
rotation_offset
[
i
]
=
get_bits
(
&
s
->
gb
,
6
);
...
@@ -152,17 +637,129 @@ static void decode_decorrelation_matrix(WMA3DecodeContext *s,
...
@@ -152,17 +637,129 @@ static void decode_decorrelation_matrix(WMA3DecodeContext *s,
}
}
}
}
/**
*@brief Decode channel transformation parameters
*@param s codec context
*@return 0 in case of success, < 0 in case of bitstream errors
*/
static
int
decode_channel_transform
(
WMAProDecodeCtx
*
s
)
{
int
i
;
/* should never consume more than 1921 bits for the 8 channel case
* 1 + MAX_CHANNELS * ( MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
* + MAX_CHANNELS + MAX_BANDS + 1)
*/
/** in the one channel case channel transforms are pointless */
s
->
num_chgroups
=
0
;
if
(
s
->
num_channels
>
1
)
{
int
remaining_channels
=
s
->
channels_for_cur_subframe
;
if
(
get_bits1
(
&
s
->
gb
))
{
av_log_ask_for_sample
(
s
->
avctx
,
"unsupported channel transform bit
\n
"
);
return
AVERROR_INVALIDDATA
;
}
for
(
s
->
num_chgroups
=
0
;
remaining_channels
&&
s
->
num_chgroups
<
s
->
channels_for_cur_subframe
;
s
->
num_chgroups
++
)
{
WMAProChannelGrp
*
chgroup
=
&
s
->
chgroup
[
s
->
num_chgroups
];
float
**
channel_data
=
chgroup
->
channel_data
;
chgroup
->
num_channels
=
0
;
chgroup
->
transform
=
0
;
/** decode channel mask */
if
(
remaining_channels
>
2
)
{
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
channel_idx
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
(
!
s
->
channel
[
channel_idx
].
grouped
&&
get_bits1
(
&
s
->
gb
))
{
++
chgroup
->
num_channels
;
s
->
channel
[
channel_idx
].
grouped
=
1
;
*
channel_data
++
=
s
->
channel
[
channel_idx
].
coeffs
;
}
}
}
else
{
chgroup
->
num_channels
=
remaining_channels
;
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
channel_idx
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
(
!
s
->
channel
[
channel_idx
].
grouped
)
*
channel_data
++
=
s
->
channel
[
channel_idx
].
coeffs
;
s
->
channel
[
channel_idx
].
grouped
=
1
;
}
}
/** decode transform type */
if
(
chgroup
->
num_channels
==
2
)
{
if
(
get_bits1
(
&
s
->
gb
))
{
if
(
get_bits1
(
&
s
->
gb
))
{
av_log_ask_for_sample
(
s
->
avctx
,
"unsupported channel transform type
\n
"
);
}
}
else
{
chgroup
->
transform
=
1
;
if
(
s
->
num_channels
==
2
)
{
chgroup
->
decorrelation_matrix
[
0
]
=
1
.
0
;
chgroup
->
decorrelation_matrix
[
1
]
=
-
1
.
0
;
chgroup
->
decorrelation_matrix
[
2
]
=
1
.
0
;
chgroup
->
decorrelation_matrix
[
3
]
=
1
.
0
;
}
else
{
/** cos(pi/4) */
chgroup
->
decorrelation_matrix
[
0
]
=
0
.
70703125
;
chgroup
->
decorrelation_matrix
[
1
]
=
-
0
.
70703125
;
chgroup
->
decorrelation_matrix
[
2
]
=
0
.
70703125
;
chgroup
->
decorrelation_matrix
[
3
]
=
0
.
70703125
;
}
}
}
else
if
(
chgroup
->
num_channels
>
2
)
{
if
(
get_bits1
(
&
s
->
gb
))
{
chgroup
->
transform
=
1
;
if
(
get_bits1
(
&
s
->
gb
))
{
decode_decorrelation_matrix
(
s
,
chgroup
);
}
else
{
/** FIXME: more than 6 coupled channels not supported */
if
(
chgroup
->
num_channels
>
6
)
{
av_log_ask_for_sample
(
s
->
avctx
,
"coupled channels > 6
\n
"
);
}
else
{
memcpy
(
chgroup
->
decorrelation_matrix
,
default_decorrelation
[
chgroup
->
num_channels
],
chgroup
->
num_channels
*
chgroup
->
num_channels
*
sizeof
(
*
chgroup
->
decorrelation_matrix
));
}
}
}
}
/** decode transform on / off */
if
(
chgroup
->
transform
)
{
if
(
!
get_bits1
(
&
s
->
gb
))
{
int
i
;
/** transform can be enabled for individual bands */
for
(
i
=
0
;
i
<
s
->
num_bands
;
i
++
)
{
chgroup
->
transform_band
[
i
]
=
get_bits1
(
&
s
->
gb
);
}
}
else
{
memset
(
chgroup
->
transform_band
,
1
,
s
->
num_bands
);
}
}
remaining_channels
-=
chgroup
->
num_channels
;
}
}
return
0
;
}
/**
/**
*@brief Extract the coefficients from the bitstream.
*@brief Extract the coefficients from the bitstream.
*@param s codec context
*@param s codec context
*@param c current channel number
*@param c current channel number
*@return 0 on success, < 0 in case of bitstream errors
*@return 0 on success, < 0 in case of bitstream errors
*/
*/
static
int
decode_coeffs
(
WMA
3DecodeContext
*
s
,
int
c
)
static
int
decode_coeffs
(
WMA
ProDecodeCtx
*
s
,
int
c
)
{
{
int
vlctable
;
int
vlctable
;
VLC
*
vlc
;
VLC
*
vlc
;
WMA
3
ChannelCtx
*
ci
=
&
s
->
channel
[
c
];
WMA
Pro
ChannelCtx
*
ci
=
&
s
->
channel
[
c
];
int
rl_mode
=
0
;
int
rl_mode
=
0
;
int
cur_coeff
=
0
;
int
cur_coeff
=
0
;
int
num_zeros
=
0
;
int
num_zeros
=
0
;
...
@@ -220,6 +817,7 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
...
@@ -220,6 +817,7 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
ci
->
coeffs
[
cur_coeff
]
=
(
vals
[
i
]
^
sign
)
-
sign
;
ci
->
coeffs
[
cur_coeff
]
=
(
vals
[
i
]
^
sign
)
-
sign
;
num_zeros
=
0
;
num_zeros
=
0
;
}
else
{
}
else
{
ci
->
coeffs
[
cur_coeff
]
=
0
;
/** switch to run level mode when subframe_len / 128 zeros
/** switch to run level mode when subframe_len / 128 zeros
were found in a row */
were found in a row */
rl_mode
|=
(
++
num_zeros
>
s
->
subframe_len
>>
8
);
rl_mode
|=
(
++
num_zeros
>
s
->
subframe_len
>>
8
);
...
@@ -230,6 +828,8 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
...
@@ -230,6 +828,8 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
/** decode run level coded coefficients */
/** decode run level coded coefficients */
if
(
rl_mode
)
{
if
(
rl_mode
)
{
memset
(
&
ci
->
coeffs
[
cur_coeff
],
0
,
sizeof
(
*
ci
->
coeffs
)
*
(
s
->
subframe_len
-
cur_coeff
));
if
(
ff_wma_run_level_decode
(
s
->
avctx
,
&
s
->
gb
,
vlc
,
if
(
ff_wma_run_level_decode
(
s
->
avctx
,
&
s
->
gb
,
vlc
,
level
,
run
,
1
,
ci
->
coeffs
,
level
,
run
,
1
,
ci
->
coeffs
,
cur_coeff
,
s
->
subframe_len
,
cur_coeff
,
s
->
subframe_len
,
...
@@ -240,11 +840,107 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
...
@@ -240,11 +840,107 @@ static int decode_coeffs(WMA3DecodeContext *s, int c)
return
0
;
return
0
;
}
}
/**
*@brief Extract scale factors from the bitstream.
*@param s codec context
*@return 0 on success, < 0 in case of bitstream errors
*/
static
int
decode_scale_factors
(
WMAProDecodeCtx
*
s
)
{
int
i
;
/** should never consume more than 5344 bits
* MAX_CHANNELS * (1 + MAX_BANDS * 23)
*/
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
int
*
sf
;
int
*
sf_end
=
s
->
channel
[
c
].
scale_factors
+
s
->
num_bands
;
/** resample scale factors for the new block size
* as the scale factors might need to be resampled several times
* before some new values are transmitted, a backup of the last
* transmitted scale factors is kept in saved_scale_factors
*/
if
(
s
->
channel
[
c
].
reuse_sf
)
{
const
int8_t
*
sf_offsets
=
s
->
sf_offsets
[
s
->
table_idx
][
s
->
channel
[
c
].
table_idx
];
int
b
;
for
(
b
=
0
;
b
<
s
->
num_bands
;
b
++
)
s
->
channel
[
c
].
scale_factors
[
b
]
=
s
->
channel
[
c
].
saved_scale_factors
[
*
sf_offsets
++
];
}
if
(
!
s
->
channel
[
c
].
cur_subframe
||
get_bits1
(
&
s
->
gb
))
{
if
(
!
s
->
channel
[
c
].
reuse_sf
)
{
int
val
;
/** decode DPCM coded scale factors */
s
->
channel
[
c
].
scale_factor_step
=
get_bits
(
&
s
->
gb
,
2
)
+
1
;
val
=
45
/
s
->
channel
[
c
].
scale_factor_step
;
for
(
sf
=
s
->
channel
[
c
].
scale_factors
;
sf
<
sf_end
;
sf
++
)
{
val
+=
get_vlc2
(
&
s
->
gb
,
sf_vlc
.
table
,
SCALEVLCBITS
,
SCALEMAXDEPTH
)
-
60
;
*
sf
=
val
;
}
}
else
{
int
i
;
/** run level decode differences to the resampled factors */
for
(
i
=
0
;
i
<
s
->
num_bands
;
i
++
)
{
int
idx
;
int
skip
;
int
val
;
int
sign
;
idx
=
get_vlc2
(
&
s
->
gb
,
sf_rl_vlc
.
table
,
VLCBITS
,
SCALERLMAXDEPTH
);
if
(
!
idx
)
{
uint32_t
code
=
get_bits
(
&
s
->
gb
,
14
);
val
=
code
>>
6
;
sign
=
(
code
&
1
)
-
1
;
skip
=
(
code
&
0x3f
)
>>
1
;
}
else
if
(
idx
==
1
)
{
break
;
}
else
{
skip
=
scale_rl_run
[
idx
];
val
=
scale_rl_level
[
idx
];
sign
=
get_bits1
(
&
s
->
gb
)
-
1
;
}
i
+=
skip
;
if
(
i
>=
s
->
num_bands
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"invalid scale factor coding
\n
"
);
return
AVERROR_INVALIDDATA
;
}
s
->
channel
[
c
].
scale_factors
[
i
]
+=
(
val
^
sign
)
-
sign
;
}
}
/** save transmitted scale factors so that they can be reused for
the next subframe */
memcpy
(
s
->
channel
[
c
].
saved_scale_factors
,
s
->
channel
[
c
].
scale_factors
,
s
->
num_bands
*
sizeof
(
*
s
->
channel
[
c
].
saved_scale_factors
));
s
->
channel
[
c
].
table_idx
=
s
->
table_idx
;
s
->
channel
[
c
].
reuse_sf
=
1
;
}
/** calculate new scale factor maximum */
s
->
channel
[
c
].
max_scale_factor
=
s
->
channel
[
c
].
scale_factors
[
0
];
for
(
sf
=
s
->
channel
[
c
].
scale_factors
+
1
;
sf
<
sf_end
;
sf
++
)
{
s
->
channel
[
c
].
max_scale_factor
=
FFMAX
(
s
->
channel
[
c
].
max_scale_factor
,
*
sf
);
}
}
return
0
;
}
/**
/**
*@brief Reconstruct the individual channel data.
*@brief Reconstruct the individual channel data.
*@param s codec context
*@param s codec context
*/
*/
static
void
inverse_channel_transform
(
WMA
3DecodeContext
*
s
)
static
void
inverse_channel_transform
(
WMA
ProDecodeCtx
*
s
)
{
{
int
i
;
int
i
;
...
@@ -292,3 +988,573 @@ static void inverse_channel_transform(WMA3DecodeContext *s)
...
@@ -292,3 +988,573 @@ static void inverse_channel_transform(WMA3DecodeContext *s)
}
}
}
}
/**
*@brief Apply sine window and reconstruct the output buffer.
*@param s codec context
*/
static
void
wmapro_window
(
WMAProDecodeCtx
*
s
)
{
int
i
;
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
float
*
window
;
int
winlen
=
s
->
channel
[
c
].
prev_block_len
;
float
*
start
=
s
->
channel
[
c
].
coeffs
-
(
winlen
>>
1
);
if
(
s
->
subframe_len
<
winlen
)
{
start
+=
(
winlen
-
s
->
subframe_len
)
>>
1
;
winlen
=
s
->
subframe_len
;
}
window
=
s
->
windows
[
av_log2
(
winlen
)
-
BLOCK_MIN_BITS
];
winlen
>>=
1
;
s
->
dsp
.
vector_fmul_window
(
start
,
start
,
start
+
winlen
,
window
,
0
,
winlen
);
s
->
channel
[
c
].
prev_block_len
=
s
->
subframe_len
;
}
}
/**
*@brief Decode a single subframe (block).
*@param s codec context
*@return 0 on success, < 0 when decoding failed
*/
static
int
decode_subframe
(
WMAProDecodeCtx
*
s
)
{
int
offset
=
s
->
samples_per_frame
;
int
subframe_len
=
s
->
samples_per_frame
;
int
i
;
int
total_samples
=
s
->
samples_per_frame
*
s
->
num_channels
;
int
transmit_coeffs
=
0
;
int
cur_subwoofer_cutoff
;
s
->
subframe_offset
=
get_bits_count
(
&
s
->
gb
);
/** reset channel context and find the next block offset and size
== the next block of the channel with the smallest number of
decoded samples
*/
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
channel
[
i
].
grouped
=
0
;
if
(
offset
>
s
->
channel
[
i
].
decoded_samples
)
{
offset
=
s
->
channel
[
i
].
decoded_samples
;
subframe_len
=
s
->
channel
[
i
].
subframe_len
[
s
->
channel
[
i
].
cur_subframe
];
}
}
dprintf
(
s
->
avctx
,
"processing subframe with offset %i len %i
\n
"
,
offset
,
subframe_len
);
/** get a list of all channels that contain the estimated block */
s
->
channels_for_cur_subframe
=
0
;
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
const
int
cur_subframe
=
s
->
channel
[
i
].
cur_subframe
;
/** substract already processed samples */
total_samples
-=
s
->
channel
[
i
].
decoded_samples
;
/** and count if there are multiple subframes that match our profile */
if
(
offset
==
s
->
channel
[
i
].
decoded_samples
&&
subframe_len
==
s
->
channel
[
i
].
subframe_len
[
cur_subframe
])
{
total_samples
-=
s
->
channel
[
i
].
subframe_len
[
cur_subframe
];
s
->
channel
[
i
].
decoded_samples
+=
s
->
channel
[
i
].
subframe_len
[
cur_subframe
];
s
->
channel_indexes_for_cur_subframe
[
s
->
channels_for_cur_subframe
]
=
i
;
++
s
->
channels_for_cur_subframe
;
}
}
/** check if the frame will be complete after processing the
estimated block */
if
(
!
total_samples
)
s
->
parsed_all_subframes
=
1
;
dprintf
(
s
->
avctx
,
"subframe is part of %i channels
\n
"
,
s
->
channels_for_cur_subframe
);
/** calculate number of scale factor bands and their offsets */
s
->
table_idx
=
av_log2
(
s
->
samples_per_frame
/
subframe_len
);
s
->
num_bands
=
s
->
num_sfb
[
s
->
table_idx
];
s
->
cur_sfb_offsets
=
s
->
sfb_offsets
[
s
->
table_idx
];
cur_subwoofer_cutoff
=
s
->
subwoofer_cutoffs
[
s
->
table_idx
];
/** configure the decoder for the current subframe */
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
s
->
channel
[
c
].
coeffs
=
&
s
->
channel
[
c
].
out
[(
s
->
samples_per_frame
>>
1
)
+
offset
];
}
s
->
subframe_len
=
subframe_len
;
s
->
esc_len
=
av_log2
(
s
->
subframe_len
-
1
)
+
1
;
/** skip extended header if any */
if
(
get_bits1
(
&
s
->
gb
))
{
int
num_fill_bits
;
if
(
!
(
num_fill_bits
=
get_bits
(
&
s
->
gb
,
2
)))
{
int
len
=
get_bits
(
&
s
->
gb
,
4
);
num_fill_bits
=
get_bits
(
&
s
->
gb
,
len
)
+
1
;
}
if
(
num_fill_bits
>=
0
)
{
if
(
get_bits_count
(
&
s
->
gb
)
+
num_fill_bits
>
s
->
num_saved_bits
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"invalid number of fill bits
\n
"
);
return
AVERROR_INVALIDDATA
;
}
skip_bits_long
(
&
s
->
gb
,
num_fill_bits
);
}
}
/** no idea for what the following bit is used */
if
(
get_bits1
(
&
s
->
gb
))
{
av_log_ask_for_sample
(
s
->
avctx
,
"reserved bit set
\n
"
);
return
AVERROR_INVALIDDATA
;
}
if
(
decode_channel_transform
(
s
)
<
0
)
return
AVERROR_INVALIDDATA
;
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
((
s
->
channel
[
c
].
transmit_coefs
=
get_bits1
(
&
s
->
gb
)))
transmit_coeffs
=
1
;
}
if
(
transmit_coeffs
)
{
int
step
;
int
quant_step
=
90
*
s
->
bits_per_sample
>>
4
;
if
((
get_bits1
(
&
s
->
gb
)))
{
/** FIXME: might change run level mode decision */
av_log_ask_for_sample
(
s
->
avctx
,
"unsupported quant step coding
\n
"
);
return
AVERROR_INVALIDDATA
;
}
/** decode quantization step */
step
=
get_sbits
(
&
s
->
gb
,
6
);
quant_step
+=
step
;
if
(
step
==
-
32
||
step
==
31
)
{
const
int
sign
=
(
step
==
31
)
-
1
;
int
quant
=
0
;
while
(
get_bits_count
(
&
s
->
gb
)
+
5
<
s
->
num_saved_bits
&&
(
step
=
get_bits
(
&
s
->
gb
,
5
))
==
31
)
{
quant
+=
31
;
}
quant_step
+=
((
quant
+
step
)
^
sign
)
-
sign
;
}
if
(
quant_step
<
0
)
{
av_log
(
s
->
avctx
,
AV_LOG_DEBUG
,
"negative quant step
\n
"
);
}
/** decode quantization step modifiers for every channel */
if
(
s
->
channels_for_cur_subframe
==
1
)
{
s
->
channel
[
s
->
channel_indexes_for_cur_subframe
[
0
]].
quant_step
=
quant_step
;
}
else
{
int
modifier_len
=
get_bits
(
&
s
->
gb
,
3
);
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
s
->
channel
[
c
].
quant_step
=
quant_step
;
if
(
get_bits1
(
&
s
->
gb
))
{
if
(
modifier_len
)
{
s
->
channel
[
c
].
quant_step
+=
get_bits
(
&
s
->
gb
,
modifier_len
)
+
1
;
}
else
++
s
->
channel
[
c
].
quant_step
;
}
}
}
/** decode scale factors */
if
(
decode_scale_factors
(
s
)
<
0
)
return
AVERROR_INVALIDDATA
;
}
dprintf
(
s
->
avctx
,
"BITSTREAM: subframe header length was %i
\n
"
,
get_bits_count
(
&
s
->
gb
)
-
s
->
subframe_offset
);
/** parse coefficients */
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
(
s
->
channel
[
c
].
transmit_coefs
&&
get_bits_count
(
&
s
->
gb
)
<
s
->
num_saved_bits
)
{
decode_coeffs
(
s
,
c
);
}
else
memset
(
s
->
channel
[
c
].
coeffs
,
0
,
sizeof
(
*
s
->
channel
[
c
].
coeffs
)
*
subframe_len
);
}
dprintf
(
s
->
avctx
,
"BITSTREAM: subframe length was %i
\n
"
,
get_bits_count
(
&
s
->
gb
)
-
s
->
subframe_offset
);
if
(
transmit_coeffs
)
{
/** reconstruct the per channel data */
inverse_channel_transform
(
s
);
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
const
int
*
sf
=
s
->
channel
[
c
].
scale_factors
;
int
b
;
if
(
c
==
s
->
lfe_channel
)
memset
(
&
s
->
tmp
[
cur_subwoofer_cutoff
],
0
,
sizeof
(
*
s
->
tmp
)
*
(
subframe_len
-
cur_subwoofer_cutoff
));
/** inverse quantization and rescaling */
for
(
b
=
0
;
b
<
s
->
num_bands
;
b
++
)
{
const
int
end
=
FFMIN
(
s
->
cur_sfb_offsets
[
b
+
1
],
s
->
subframe_len
);
const
int
exp
=
s
->
channel
[
c
].
quant_step
-
(
s
->
channel
[
c
].
max_scale_factor
-
*
sf
++
)
*
s
->
channel
[
c
].
scale_factor_step
;
const
float
quant
=
pow
(
10
.
0
,
exp
/
20
.
0
);
int
start
;
for
(
start
=
s
->
cur_sfb_offsets
[
b
];
start
<
end
;
start
++
)
s
->
tmp
[
start
]
=
s
->
channel
[
c
].
coeffs
[
start
]
*
quant
;
}
/** apply imdct (ff_imdct_half == DCTIV with reverse) */
ff_imdct_half
(
&
s
->
mdct_ctx
[
av_log2
(
subframe_len
)
-
BLOCK_MIN_BITS
],
s
->
channel
[
c
].
coeffs
,
s
->
tmp
);
}
}
/** window and overlapp-add */
wmapro_window
(
s
);
/** handled one subframe */
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
(
s
->
channel
[
c
].
cur_subframe
>=
s
->
channel
[
c
].
num_subframes
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken subframe
\n
"
);
return
AVERROR_INVALIDDATA
;
}
++
s
->
channel
[
c
].
cur_subframe
;
}
return
0
;
}
/**
*@brief Decode one WMA frame.
*@param s codec context
*@return 0 if the trailer bit indicates that this is the last frame,
* 1 if there are additional frames
*/
static
int
decode_frame
(
WMAProDecodeCtx
*
s
)
{
GetBitContext
*
gb
=
&
s
->
gb
;
int
more_frames
=
0
;
int
len
=
0
;
int
i
;
/** check for potential output buffer overflow */
if
(
s
->
num_channels
*
s
->
samples_per_frame
>
s
->
samples_end
-
s
->
samples
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"not enough space for the output samples
\n
"
);
s
->
packet_loss
=
1
;
return
0
;
}
/** get frame length */
if
(
s
->
len_prefix
)
len
=
get_bits
(
gb
,
s
->
log2_frame_size
);
dprintf
(
s
->
avctx
,
"decoding frame with length %x
\n
"
,
len
);
/** decode tile information */
if
(
decode_tilehdr
(
s
))
{
s
->
packet_loss
=
1
;
return
0
;
}
/** read postproc transform */
if
(
s
->
num_channels
>
1
&&
get_bits1
(
gb
))
{
av_log_ask_for_sample
(
s
->
avctx
,
"Unsupported postproc transform found
\n
"
);
s
->
packet_loss
=
1
;
return
0
;
}
/** read drc info */
if
(
s
->
dynamic_range_compression
)
{
s
->
drc_gain
=
get_bits
(
gb
,
8
);
dprintf
(
s
->
avctx
,
"drc_gain %i
\n
"
,
s
->
drc_gain
);
}
/** no idea what these are for, might be the number of samples
that need to be skipped at the beginning or end of a stream */
if
(
get_bits1
(
gb
))
{
int
skip
;
/** usually true for the first frame */
if
(
get_bits1
(
gb
))
{
skip
=
get_bits
(
gb
,
av_log2
(
s
->
samples_per_frame
*
2
));
dprintf
(
s
->
avctx
,
"start skip: %i
\n
"
,
skip
);
}
/** sometimes true for the last frame */
if
(
get_bits1
(
gb
))
{
skip
=
get_bits
(
gb
,
av_log2
(
s
->
samples_per_frame
*
2
));
dprintf
(
s
->
avctx
,
"end skip: %i
\n
"
,
skip
);
}
}
dprintf
(
s
->
avctx
,
"BITSTREAM: frame header length was %i
\n
"
,
get_bits_count
(
gb
)
-
s
->
frame_offset
);
/** reset subframe states */
s
->
parsed_all_subframes
=
0
;
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
channel
[
i
].
decoded_samples
=
0
;
s
->
channel
[
i
].
cur_subframe
=
0
;
s
->
channel
[
i
].
reuse_sf
=
0
;
}
/** decode all subframes */
while
(
!
s
->
parsed_all_subframes
)
{
if
(
decode_subframe
(
s
)
<
0
)
{
s
->
packet_loss
=
1
;
return
0
;
}
}
/** interleave samples and write them to the output buffer */
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
float
*
ptr
;
int
incr
=
s
->
num_channels
;
float
*
iptr
=
s
->
channel
[
i
].
out
;
int
x
;
ptr
=
s
->
samples
+
i
;
for
(
x
=
0
;
x
<
s
->
samples_per_frame
;
x
++
)
{
*
ptr
=
av_clipf
(
*
iptr
++
,
-
1
.
0
,
32767
.
0
/
32768
.
0
);
ptr
+=
incr
;
}
/** reuse second half of the IMDCT output for the next frame */
memcpy
(
&
s
->
channel
[
i
].
out
[
0
],
&
s
->
channel
[
i
].
out
[
s
->
samples_per_frame
],
s
->
samples_per_frame
*
sizeof
(
*
s
->
channel
[
i
].
out
)
>>
1
);
}
if
(
s
->
skip_frame
)
{
s
->
skip_frame
=
0
;
}
else
s
->
samples
+=
s
->
num_channels
*
s
->
samples_per_frame
;
if
(
len
!=
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
+
2
)
{
/** FIXME: not sure if this is always an error */
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"frame[%i] would have to skip %i bits
\n
"
,
s
->
frame_num
,
len
-
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
-
1
);
s
->
packet_loss
=
1
;
return
0
;
}
/** skip the rest of the frame data */
skip_bits_long
(
gb
,
len
-
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
-
1
);
/** decode trailer bit */
more_frames
=
get_bits1
(
gb
);
++
s
->
frame_num
;
return
more_frames
;
}
/**
*@brief Calculate remaining input buffer length.
*@param s codec context
*@param gb bitstream reader context
*@return remaining size in bits
*/
static
int
remaining_bits
(
WMAProDecodeCtx
*
s
,
GetBitContext
*
gb
)
{
return
s
->
buf_bit_size
-
get_bits_count
(
gb
);
}
/**
*@brief Fill the bit reservoir with a (partial) frame.
*@param s codec context
*@param gb bitstream reader context
*@param len length of the partial frame
*@param append decides wether to reset the buffer or not
*/
static
void
save_bits
(
WMAProDecodeCtx
*
s
,
GetBitContext
*
gb
,
int
len
,
int
append
)
{
int
buflen
;
/** when the frame data does not need to be concatenated, the input buffer
is resetted and additional bits from the previous frame are copyed
and skipped later so that a fast byte copy is possible */
if
(
!
append
)
{
s
->
frame_offset
=
get_bits_count
(
gb
)
&
7
;
s
->
num_saved_bits
=
s
->
frame_offset
;
init_put_bits
(
&
s
->
pb
,
s
->
frame_data
,
MAX_FRAMESIZE
);
}
buflen
=
(
s
->
num_saved_bits
+
len
+
8
)
>>
3
;
if
(
len
<=
0
||
buflen
>
MAX_FRAMESIZE
)
{
av_log_ask_for_sample
(
s
->
avctx
,
"input buffer too small
\n
"
);
s
->
packet_loss
=
1
;
return
;
}
s
->
num_saved_bits
+=
len
;
if
(
!
append
)
{
ff_copy_bits
(
&
s
->
pb
,
gb
->
buffer
+
(
get_bits_count
(
gb
)
>>
3
),
s
->
num_saved_bits
);
}
else
{
int
align
=
8
-
(
get_bits_count
(
gb
)
&
7
);
align
=
FFMIN
(
align
,
len
);
put_bits
(
&
s
->
pb
,
align
,
get_bits
(
gb
,
align
));
len
-=
align
;
ff_copy_bits
(
&
s
->
pb
,
gb
->
buffer
+
(
get_bits_count
(
gb
)
>>
3
),
len
);
}
skip_bits_long
(
gb
,
len
);
{
PutBitContext
tmp
=
s
->
pb
;
flush_put_bits
(
&
tmp
);
}
init_get_bits
(
&
s
->
gb
,
s
->
frame_data
,
s
->
num_saved_bits
);
skip_bits
(
&
s
->
gb
,
s
->
frame_offset
);
}
/**
*@brief Decode a single WMA packet.
*@param avctx codec context
*@param data the output buffer
*@param data_size number of bytes that were written to the output buffer
*@param avpkt input packet
*@return number of bytes that were read from the input buffer
*/
static
int
decode_packet
(
AVCodecContext
*
avctx
,
void
*
data
,
int
*
data_size
,
AVPacket
*
avpkt
)
{
GetBitContext
gb
;
WMAProDecodeCtx
*
s
=
avctx
->
priv_data
;
const
uint8_t
*
buf
=
avpkt
->
data
;
int
buf_size
=
avpkt
->
size
;
int
more_frames
=
1
;
int
num_bits_prev_frame
;
int
packet_sequence_number
;
s
->
samples
=
data
;
s
->
samples_end
=
(
float
*
)((
int8_t
*
)
data
+
*
data_size
);
s
->
buf_bit_size
=
buf_size
<<
3
;
*
data_size
=
0
;
/** sanity check for the buffer length */
if
(
buf_size
<
avctx
->
block_align
)
return
0
;
buf_size
=
avctx
->
block_align
;
/** parse packet header */
init_get_bits
(
&
gb
,
buf
,
s
->
buf_bit_size
);
packet_sequence_number
=
get_bits
(
&
gb
,
4
);
skip_bits
(
&
gb
,
2
);
/** get number of bits that need to be added to the previous frame */
num_bits_prev_frame
=
get_bits
(
&
gb
,
s
->
log2_frame_size
);
dprintf
(
avctx
,
"packet[%d]: nbpf %x
\n
"
,
avctx
->
frame_number
,
num_bits_prev_frame
);
/** check for packet loss */
if
(
!
s
->
packet_loss
&&
((
s
->
packet_sequence_number
+
1
)
&
0xF
)
!=
packet_sequence_number
)
{
s
->
packet_loss
=
1
;
av_log
(
avctx
,
AV_LOG_ERROR
,
"Packet loss detected! seq %x vs %x
\n
"
,
s
->
packet_sequence_number
,
packet_sequence_number
);
}
s
->
packet_sequence_number
=
packet_sequence_number
;
if
(
num_bits_prev_frame
>
0
)
{
/** append the previous frame data to the remaining data from the
previous packet to create a full frame */
save_bits
(
s
,
&
gb
,
num_bits_prev_frame
,
1
);
dprintf
(
avctx
,
"accumulated %x bits of frame data
\n
"
,
s
->
num_saved_bits
-
s
->
frame_offset
);
/** decode the cross packet frame if it is valid */
if
(
!
s
->
packet_loss
)
decode_frame
(
s
);
}
else
if
(
s
->
num_saved_bits
-
s
->
frame_offset
)
{
dprintf
(
avctx
,
"ignoring %x previously saved bits
\n
"
,
s
->
num_saved_bits
-
s
->
frame_offset
);
}
s
->
packet_loss
=
0
;
/** decode the rest of the packet */
while
(
!
s
->
packet_loss
&&
more_frames
&&
remaining_bits
(
s
,
&
gb
)
>
s
->
log2_frame_size
)
{
int
frame_size
=
show_bits
(
&
gb
,
s
->
log2_frame_size
);
/** there is enough data for a full frame */
if
(
remaining_bits
(
s
,
&
gb
)
>=
frame_size
&&
frame_size
>
0
)
{
save_bits
(
s
,
&
gb
,
frame_size
,
0
);
/** decode the frame */
more_frames
=
decode_frame
(
s
);
if
(
!
more_frames
)
{
dprintf
(
avctx
,
"no more frames
\n
"
);
}
}
else
more_frames
=
0
;
}
if
(
!
s
->
packet_loss
&&
remaining_bits
(
s
,
&
gb
)
>
0
)
{
/** save the rest of the data so that it can be decoded
with the next packet */
save_bits
(
s
,
&
gb
,
remaining_bits
(
s
,
&
gb
),
0
);
}
*
data_size
=
(
int8_t
*
)
s
->
samples
-
(
int8_t
*
)
data
;
return
avctx
->
block_align
;
}
/**
*@brief Clear decoder buffers (for seeking).
*@param avctx codec context
*/
static
void
flush
(
AVCodecContext
*
avctx
)
{
WMAProDecodeCtx
*
s
=
avctx
->
priv_data
;
int
i
;
/** reset output buffer as a part of it is used during the windowing of a
new frame */
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
memset
(
s
->
channel
[
i
].
out
,
0
,
s
->
samples_per_frame
*
sizeof
(
*
s
->
channel
[
i
].
out
));
s
->
packet_loss
=
1
;
}
/**
*@brief wmapro decoder
*/
AVCodec
wmapro_decoder
=
{
"wmapro"
,
CODEC_TYPE_AUDIO
,
CODEC_ID_WMAPRO
,
sizeof
(
WMAProDecodeCtx
),
decode_init
,
NULL
,
decode_end
,
decode_packet
,
.
flush
=
flush
,
.
long_name
=
NULL_IF_CONFIG_SMALL
(
"Windows Media Audio 9 Professional"
),
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment