Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
F
ffmpeg.wasm-core
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Linshizhi
ffmpeg.wasm-core
Commits
b29c7bcb
Commit
b29c7bcb
authored
Aug 08, 2019
by
Jarek Samic
Committed by
Mark Thompson
Aug 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
lavfi: add deshake_opencl filter
parent
5b5746b1
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
2924 additions
and
1 deletion
+2924
-1
configure
configure
+1
-0
filters.texi
doc/filters.texi
+69
-0
Makefile
libavfilter/Makefile
+2
-0
allfilters.c
libavfilter/allfilters.c
+1
-0
deshake.cl
libavfilter/opencl/deshake.cl
+647
-0
opencl_source.h
libavfilter/opencl_source.h
+1
-0
version.h
libavfilter/version.h
+1
-1
vf_deshake_opencl.c
libavfilter/vf_deshake_opencl.c
+2202
-0
No files found.
configure
View file @
b29c7bcb
...
...
@@ -3454,6 +3454,7 @@ delogo_filter_deps="gpl"
denoise_vaapi_filter_deps
=
"vaapi"
derain_filter_select
=
"dnn"
deshake_filter_select
=
"pixelutils"
deshake_opencl_filter_deps
=
"opencl"
dilation_opencl_filter_deps
=
"opencl"
drawtext_filter_deps
=
"libfreetype"
drawtext_filter_suggest
=
"libfontconfig libfribidi"
...
...
doc/filters.texi
View file @
b29c7bcb
...
...
@@ -19795,6 +19795,75 @@ Make every semi-green pixel in the input transparent with some slight blending:
@end example
@end itemize
@section deshake_opencl
Feature-point based video stabilization filter.
The filter accepts the following options:
@table @option
@item tripod
Simulates a tripod by preventing any camera movement whatsoever from the original frame. Defaults to @code{0}.
@item debug
Whether or not additional debug info should be displayed, both in the processed output and in the console.
Note that in order to see console debug output you will also need to pass @code{-v verbose} to ffmpeg.
Viewing point matches in the output video is only supported for RGB input.
Defaults to @code{0}.
@item adaptive_crop
Whether or not to do a tiny bit of cropping at the borders to cut down on the amount of mirrored pixels.
Defaults to @code{1}.
@item refine_features
Whether or not feature points should be refined at a sub-pixel level.
This can be turned off for a slight performance gain at the cost of precision.
Defaults to @code{1}.
@item smooth_strength
The strength of the smoothing applied to the camera path from @code{0.0} to @code{1.0}.
@code{1.0} is the maximum smoothing strength while values less than that result in less smoothing.
@code{0.0} causes the filter to adaptively choose a smoothing strength on a per-frame basis.
Defaults to @code{0.0}.
@item smooth_window_multiplier
Controls the size of the smoothing window (the number of frames buffered to determine motion information from).
The size of the smoothing window is determined by multiplying the framerate of the video by this number.
Acceptable values range from @code{0.1} to @code{10.0}.
Larger values increase the amount of motion data available for determining how to smooth the camera path,
potentially improving smoothness, but also increase latency and memory usage.
Defaults to @code{2.0}.
@end table
@subsection Examples
@itemize
@item
Stabilize a video with a fixed, medium smoothing strength:
@example
-i INPUT -vf "
hwupload
,
deshake_opencl
=
smooth_strength
=
0.5
,
hwdownload
" OUTPUT
@end example
@item
Stabilize a video with debugging (both in console and in rendered video):
@example
-i INPUT -filter_complex "
[
0
:
v
]
format
=
rgba
,
hwupload
,
deshake_opencl
=
debug
=
1
,
hwdownload
,
format
=
rgba
,
format
=
yuv420p
" -v verbose OUTPUT
@end example
@end itemize
@section nlmeans_opencl
Non-local Means denoise filter through OpenCL, this filter accepts same options as @ref{nlmeans}.
...
...
libavfilter/Makefile
View file @
b29c7bcb
...
...
@@ -211,6 +211,8 @@ OBJS-$(CONFIG_DEINTERLACE_VAAPI_FILTER) += vf_deinterlace_vaapi.o vaapi_vpp
OBJS-$(CONFIG_DEJUDDER_FILTER)
+=
vf_dejudder.o
OBJS-$(CONFIG_DELOGO_FILTER)
+=
vf_delogo.o
OBJS-$(CONFIG_DENOISE_VAAPI_FILTER)
+=
vf_misc_vaapi.o
vaapi_vpp.o
OBJS-$(CONFIG_DESHAKE_OPENCL_FILTER)
+=
vf_deshake_opencl.o
opencl.o
\
opencl/deshake.o
OBJS-$(CONFIG_DESHAKE_FILTER)
+=
vf_deshake.o
OBJS-$(CONFIG_DESPILL_FILTER)
+=
vf_despill.o
OBJS-$(CONFIG_DETELECINE_FILTER)
+=
vf_detelecine.o
...
...
libavfilter/allfilters.c
View file @
b29c7bcb
...
...
@@ -200,6 +200,7 @@ extern AVFilter ff_vf_delogo;
extern
AVFilter
ff_vf_denoise_vaapi
;
extern
AVFilter
ff_vf_derain
;
extern
AVFilter
ff_vf_deshake
;
extern
AVFilter
ff_vf_deshake_opencl
;
extern
AVFilter
ff_vf_despill
;
extern
AVFilter
ff_vf_detelecine
;
extern
AVFilter
ff_vf_dilation
;
...
...
libavfilter/opencl/deshake.cl
0 → 100644
View file @
b29c7bcb
/*
*
This
file
is
part
of
FFmpeg.
*
*
FFmpeg
is
free
software
; you can redistribute it and/or
*
modify
it
under
the
terms
of
the
GNU
Lesser
General
Public
*
License
as
published
by
the
Free
Software
Foundation
; either
*
version
2.1
of
the
License,
or
(
at
your
option
)
any
later
version.
*
*
FFmpeg
is
distributed
in
the
hope
that
it
will
be
useful,
*
but
WITHOUT
ANY
WARRANTY
; without even the implied warranty of
*
MERCHANTABILITY
or
FITNESS
FOR
A
PARTICULAR
PURPOSE.
See
the
GNU
*
Lesser
General
Public
License
for
more
details.
*
*
You
should
have
received
a
copy
of
the
GNU
Lesser
General
Public
*
License
along
with
FFmpeg
; if not, write to the Free Software
*
Foundation,
Inc.,
51
Franklin
Street,
Fifth
Floor,
Boston,
MA
02110-1301
USA
*
*
Copyright
(
C
)
2000
,
Intel
Corporation,
all
rights
reserved.
*
Copyright
(
C
)
2013
,
OpenCV
Foundation,
all
rights
reserved.
*
Third
party
copyrights
are
property
of
their
respective
owners.
*
*
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
*
are
permitted
provided
that
the
following
conditions
are
met:
*
*
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
*
this
list
of
conditions
and
the
following
disclaimer.
*
*
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
*
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
*
and/or
other
materials
provided
with
the
distribution.
*
*
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
*
derived
from
this
software
without
specific
prior
written
permission.
*
*
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
*
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
*
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
*
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
*
indirect,
incidental,
special,
exemplary,
or
consequential
damages
*
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
*
loss
of
use,
data,
or
profits
; or business interruption) however caused
*
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
*
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
*
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
*/
#
define
HARRIS_THRESHOLD
3.0f
//
Block
size
over
which
to
compute
harris
response
//
//
Note
that
changing
this
will
require
fiddling
with
the
local
array
sizes
in
//
harris_response
#
define
HARRIS_RADIUS
2
#
define
DISTANCE_THRESHOLD
80
//
Sub-pixel
refinement
window
for
feature
points
#
define
REFINE_WIN_HALF_W
5
#
define
REFINE_WIN_HALF_H
5
#
define
REFINE_WIN_W
11
//
REFINE_WIN_HALF_W
*
2
+
1
#
define
REFINE_WIN_H
11
//
Non-maximum
suppression
window
size
#
define
NONMAX_WIN
30
#
define
NONMAX_WIN_HALF
15
//
NONMAX_WIN
/
2
typedef
struct
PointPair
{
//
Previous
frame
float2
p1
;
//
Current
frame
float2
p2
;
}
PointPair
;
typedef
struct
SmoothedPointPair
{
//
Non-smoothed
point
in
current
frame
int2
p1
;
//
Smoothed
point
in
current
frame
float2
p2
;
}
SmoothedPointPair
;
typedef
struct
MotionVector
{
PointPair
p
;
//
Used
to
mark
vectors
as
potential
outliers
int
should_consider
;
}
MotionVector
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_FALSE
|
CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_NEAREST
;
const
sampler_t
sampler_linear
=
CLK_NORMALIZED_COORDS_FALSE
|
CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_LINEAR
;
const
sampler_t
sampler_linear_mirror
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_MIRRORED_REPEAT |
CLK_FILTER_LINEAR
;
//
Writes
to
a
1D
array
at
loc,
treating
it
as
a
2D
array
with
the
same
//
dimensions
as
the
global
work
size.
static
void
write_to_1d_arrf
(
__global
float
*buf,
int2
loc,
float
val
)
{
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
=
val
;
}
static
void
write_to_1d_arrul8
(
__global
ulong8
*buf,
int2
loc,
ulong8
val
)
{
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
=
val
;
}
static
void
write_to_1d_arrvec
(
__global
MotionVector
*buf,
int2
loc,
MotionVector
val
)
{
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
=
val
;
}
static
void
write_to_1d_arrf2
(
__global
float2
*buf,
int2
loc,
float2
val
)
{
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
=
val
;
}
static
ulong8
read_from_1d_arrul8
(
__global
const
ulong8
*buf,
int2
loc
)
{
return
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
;
}
static
float2
read_from_1d_arrf2
(
__global
const
float2
*buf,
int2
loc
)
{
return
buf[loc.x
+
loc.y
*
get_global_size
(
0
)
]
;
}
//
Returns
the
grayscale
value
at
the
given
point.
static
float
pixel_grayscale
(
__read_only
image2d_t
src,
int2
loc
)
{
float4
pixel
=
read_imagef
(
src,
sampler,
loc
)
;
return
(
pixel.x
+
pixel.y
+
pixel.z
)
/
3.0f
;
}
static
float
convolve
(
__local
const
float
*grayscale,
int
local_idx_x,
int
local_idx_y,
float
mask[3][3]
)
{
float
ret
=
0
;
//
These
loops
touch
each
pixel
surrounding
loc
as
well
as
loc
itself
for
(
int
i
=
1
,
i2
=
0
; i >= -1; --i, ++i2) {
for
(
int
j
=
-1
,
j2
=
0
; j <= 1; ++j, ++j2) {
ret
+=
mask[i2][j2]
*
grayscale[
(
local_idx_x
+
3
+
j
)
+
(
local_idx_y
+
3
+
i
)
*
14]
;
}
}
return
ret
;
}
//
Sums
dx
*
dy
for
all
pixels
within
radius
of
loc
static
float
sum_deriv_prod
(
__local
const
float
*grayscale,
float
mask_x[3][3],
float
mask_y[3][3]
)
{
float
ret
=
0
;
for
(
int
i
=
HARRIS_RADIUS
; i >= -HARRIS_RADIUS; --i) {
for
(
int
j
=
-HARRIS_RADIUS
; j <= HARRIS_RADIUS; ++j) {
ret
+=
convolve
(
grayscale,
get_local_id
(
0
)
+
j,
get_local_id
(
1
)
+
i,
mask_x
)
*
convolve
(
grayscale,
get_local_id
(
0
)
+
j,
get_local_id
(
1
)
+
i,
mask_y
)
;
}
}
return
ret
;
}
//
Sums
d<>^2
(
determined
by
mask
)
for
all
pixels
within
radius
of
loc
static
float
sum_deriv_pow
(
__local
const
float
*grayscale,
float
mask[3][3]
)
{
float
ret
=
0
;
for
(
int
i
=
HARRIS_RADIUS
; i >= -HARRIS_RADIUS; --i) {
for
(
int
j
=
-HARRIS_RADIUS
; j <= HARRIS_RADIUS; ++j) {
float
deriv
=
convolve
(
grayscale,
get_local_id
(
0
)
+
j,
get_local_id
(
1
)
+
i,
mask
)
;
ret
+=
deriv
*
deriv
;
}
}
return
ret
;
}
//
Fills
a
box
with
the
given
radius
and
pixel
around
loc
static
void
draw_box
(
__write_only
image2d_t
dst,
int2
loc,
float4
pixel,
int
radius
)
{
for
(
int
i
=
-radius
; i <= radius; ++i) {
for
(
int
j
=
-radius
; j <= radius; ++j) {
write_imagef
(
dst,
(
int2
)(
//
Clamp
to
avoid
writing
outside
image
bounds
clamp
(
loc.x
+
i,
0
,
get_image_dim
(
dst
)
.
x
-
1
)
,
clamp
(
loc.y
+
j,
0
,
get_image_dim
(
dst
)
.
y
-
1
)
)
,
pixel
)
;
}
}
}
//
Converts
the
src
image
to
grayscale
__kernel
void
grayscale
(
__read_only
image2d_t
src,
__write_only
image2d_t
grayscale
)
{
int2
loc
=
(
int2
)(
get_global_id
(
0
)
,
get_global_id
(
1
))
;
write_imagef
(
grayscale,
loc,
(
float4
)(
pixel_grayscale
(
src,
loc
)
,
0.0f,
0.0f,
1.0f
))
;
}
//
This
kernel
computes
the
harris
response
for
the
given
grayscale
src
image
//
within
the
given
radius
and
writes
it
to
harris_buf
__kernel
void
harris_response
(
__read_only
image2d_t
grayscale,
__global
float
*harris_buf
)
{
int2
loc
=
(
int2
)(
get_global_id
(
0
)
,
get_global_id
(
1
))
;
if
(
loc.x
>
get_image_width
(
grayscale
)
-
1
|
| loc.y > get_image_height(grayscale) - 1) {
write_to_1d_arrf(harris_buf, loc, 0);
return;
}
float scale = 1.0f / ((1 << 2) * HARRIS_RADIUS * 255.0f);
float sobel_mask_x[3][3] = {
{-1, 0, 1},
{-2, 0, 2},
{-1, 0, 1}
};
float sobel_mask_y[3][3] = {
{ 1, 2, 1},
{ 0, 0, 0},
{-1, -2, -1}
};
// 8 x 8 local work + 3 pixels around each side (needed to accomodate for the
// block size radius of 2)
__local float grayscale_data[196];
int idx = get_group_id(0) * get_local_size(0);
int idy = get_group_id(1) * get_local_size(1);
for (int i = idy - 3, it = 0; i < idy + (int)get_local_size(1) + 3; i++, it++) {
for (int j = idx - 3, jt = 0; j < idx + (int)get_local_size(0) + 3; j++, jt++) {
grayscale_data[jt + it * 14] = read_imagef(grayscale, sampler, (int2)(j, i)).x;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
float sumdxdy = sum_deriv_prod(grayscale_data, sobel_mask_x, sobel_mask_y);
float sumdx2 = sum_deriv_pow(grayscale_data, sobel_mask_x);
float sumdy2 = sum_deriv_pow(grayscale_data, sobel_mask_y);
float trace = sumdx2 + sumdy2;
// r = det(M) - k(trace(M))^2
// k usually between 0.04 to 0.06
float r = (sumdx2 * sumdy2 - sumdxdy * sumdxdy) - 0.04f * (trace * trace) * pown(scale, 4);
// Threshold the r value
harris_buf[loc.x + loc.y * get_image_width(grayscale)] = r * step(HARRIS_THRESHOLD, r);
}
// Gets a patch centered around a float coordinate from a grayscale image using
// bilinear interpolation
static void get_rect_sub_pix(
__read_only image2d_t grayscale,
float *buffer,
int size_x,
int size_y,
float2 center
) {
float2 offset = ((float2)(size_x, size_y) - 1.0f) * 0.5f;
for (int i = 0; i < size_y; i++) {
for (int j = 0; j < size_x; j++) {
buffer[i * size_x + j] = read_imagef(
grayscale,
sampler_linear,
(float2)(j, i) + center - offset
).x * 255.0f;
}
}
}
// Refines detected features at a sub-pixel level
//
// This function is ported from OpenCV
static float2 corner_sub_pix(
__read_only image2d_t grayscale,
float2 feature,
float *mask
) {
float2 init = feature;
int src_width = get_global_size(0);
int src_height = get_global_size(1);
const int max_iters = 40;
const float eps = 0.001f * 0.001f;
int i, j, k;
int iter = 0;
float err = 0;
float subpix[(REFINE_WIN_W + 2) * (REFINE_WIN_H + 2)];
const float flt_epsilon = 0x1.0p-23f;
do {
float2 feature_tmp;
float a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
get_rect_sub_pix(grayscale, subpix, REFINE_WIN_W + 2, REFINE_WIN_H + 2, feature);
float *subpix_ptr = subpix;
subpix_ptr += REFINE_WIN_W + 2 + 1;
// process gradient
for (i = 0, k = 0; i < REFINE_WIN_H; i++, subpix_ptr += REFINE_WIN_W + 2) {
float py = i - REFINE_WIN_HALF_H;
for (j = 0; j < REFINE_WIN_W; j++, k++) {
float m = mask[k];
float tgx = subpix_ptr[j + 1] - subpix_ptr[j - 1];
float tgy = subpix_ptr[j + REFINE_WIN_W + 2] - subpix_ptr[j - REFINE_WIN_W - 2];
float gxx = tgx * tgx * m;
float gxy = tgx * tgy * m;
float gyy = tgy * tgy * m;
float px = j - REFINE_WIN_HALF_W;
a += gxx;
b += gxy;
c += gyy;
bb1 += gxx * px + gxy * py;
bb2 += gxy * px + gyy * py;
}
}
float det = a * c - b * b;
if (fabs(det) <= flt_epsilon * flt_epsilon) {
break;
}
// 2x2 matrix inversion
float scale = 1.0f / det;
feature_tmp.x = (float)(feature.x + (c * scale * bb1) - (b * scale * bb2));
feature_tmp.y = (float)(feature.y - (b * scale * bb1) + (a * scale * bb2));
err = dot(feature_tmp - feature, feature_tmp - feature);
feature = feature_tmp;
if (feature.x < 0 || feature.x >= src_width || feature.y < 0 || feature.y >= src_height) {
break;
}
} while (++iter < max_iters && err > eps);
// Make sure new point isn't too far from the initial point (indicates poor convergence)
if (fabs(feature.x - init.x) > REFINE_WIN_HALF_W || fabs(feature.y - init.y) > REFINE_WIN_HALF_H) {
feature = init;
}
return feature;
}
// Performs non-maximum suppression on the harris response and writes the resulting
// feature locations to refined_features.
//
// Assumes that refined_features and the global work sizes are set up such that the image
// is split up into a grid of 32x32 blocks where each block has a single slot in the
// refined_features buffer. This kernel finds the best corner in each block (if the
// block has any) and writes it to the corresponding slot in the buffer.
//
// If subpixel_refine is true, the features are additionally refined at a sub-pixel
// level for increased precision.
__kernel void refine_features(
__read_only image2d_t grayscale,
__global const float *harris_buf,
__global float2 *refined_features,
int subpixel_refine
) {
int2 loc = (int2)(get_global_id(0), get_global_id(1));
// The location in the grayscale buffer rather than the compacted grid
int2 loc_i = (int2)(loc.x * 32, loc.y * 32);
float new_val;
float max_val = 0;
float2 loc_max = (float2)(-1, -1);
int end_x = min(loc_i.x + 32, (int)get_image_dim(grayscale).x - 1);
int end_y = min(loc_i.y + 32, (int)get_image_dim(grayscale).y - 1);
for (int i = loc_i.x; i < end_x; ++i) {
for (int j = loc_i.y; j < end_y; ++j) {
new_val = harris_buf[i + j * get_image_dim(grayscale).x];
if (new_val > max_val) {
max_val = new_val;
loc_max = (float2)(i, j);
}
}
}
if (max_val == 0) {
// There are no features in this part of the frame
write_to_1d_arrf2(refined_features, loc, loc_max);
return;
}
if (subpixel_refine) {
float mask[REFINE_WIN_H * REFINE_WIN_W];
for (int i = 0; i < REFINE_WIN_H; i++) {
float y = (float)(i - REFINE_WIN_HALF_H) / REFINE_WIN_HALF_H;
float vy = exp(-y * y);
for (int j = 0; j < REFINE_WIN_W; j++) {
float x = (float)(j - REFINE_WIN_HALF_W) / REFINE_WIN_HALF_W;
mask[i * REFINE_WIN_W + j] = (float)(vy * exp(-x * x));
}
}
loc_max = corner_sub_pix(grayscale, loc_max, mask);
}
write_to_1d_arrf2(refined_features, loc, loc_max);
}
// Extracts BRIEF descriptors from the grayscale src image for the given features
// using the provided sampler.
__kernel void brief_descriptors(
__read_only image2d_t grayscale,
__global const float2 *refined_features,
// for 512 bit descriptors
__global ulong8 *desc_buf,
__global const PointPair *brief_pattern
) {
int2 loc = (int2)(get_global_id(0), get_global_id(1));
float2 feature = read_from_1d_arrf2(refined_features, loc);
// There was no feature in this part of the frame
if (feature.x == -1) {
write_to_1d_arrul8(desc_buf, loc, (ulong8)(0));
return;
}
ulong8 desc = 0;
ulong *p = &desc;
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 64; ++j) {
PointPair pair = brief_pattern[j * (i + 1)];
float l1 = read_imagef(grayscale, sampler_linear, feature + pair.p1).x;
float l2 = read_imagef(grayscale, sampler_linear, feature + pair.p2).x;
if (l1 < l2) {
p[i] |
=
1UL
<<
j
;
}
}
}
write_to_1d_arrul8
(
desc_buf,
loc,
desc
)
;
}
//
Given
buffers
with
descriptors
for
the
current
and
previous
frame,
determines
//
which
ones
match,
writing
correspondences
to
matches_buf.
//
//
Feature
and
descriptor
buffers
are
assumed
to
be
compacted
(
each
element
sourced
//
from
a
32x32
block
in
the
frame
being
processed
)
.
__kernel
void
match_descriptors
(
__global
const
float2
*prev_refined_features,
__global
const
float2
*refined_features,
__global
const
ulong8
*desc_buf,
__global
const
ulong8
*prev_desc_buf,
__global
MotionVector
*matches_buf
)
{
int2
loc
=
(
int2
)(
get_global_id
(
0
)
,
get_global_id
(
1
))
;
ulong8
desc
=
read_from_1d_arrul8
(
desc_buf,
loc
)
;
const
int
search_radius
=
3
;
MotionVector
invalid_vector
=
(
MotionVector
)
{
(
PointPair
)
{
(
float2
)(
-1
,
-1
)
,
(
float2
)(
-1
,
-1
)
},
0
}
;
if
(
desc.s0
==
0
&&
desc.s1
==
0
)
{
//
There
was
no
feature
in
this
part
of
the
frame
write_to_1d_arrvec
(
matches_buf,
loc,
invalid_vector
)
;
return
;
}
int2
start
=
max
(
loc
-
search_radius,
0
)
;
int2
end
=
min
(
loc
+
search_radius,
(
int2
)(
get_global_size
(
0
)
-
1
,
get_global_size
(
1
)
-
1
))
;
for
(
int
i
=
start.x
; i < end.x; ++i) {
for
(
int
j
=
start.y
; j < end.y; ++j) {
int2
prev_point
=
(
int2
)(
i,
j
)
;
int
total_dist
=
0
;
ulong8
prev_desc
=
read_from_1d_arrul8
(
prev_desc_buf,
prev_point
)
;
if
(
prev_desc.s0
==
0
&&
prev_desc.s1
==
0
)
{
continue
;
}
ulong
*prev_desc_p
=
&prev_desc
;
ulong
*desc_p
=
&desc
;
for
(
int
i
=
0
; i < 8; i++) {
total_dist
+=
popcount
(
desc_p[i]
^
prev_desc_p[i]
)
;
}
if
(
total_dist
<
DISTANCE_THRESHOLD
)
{
write_to_1d_arrvec
(
matches_buf,
loc,
(
MotionVector
)
{
(
PointPair
)
{
read_from_1d_arrf2
(
prev_refined_features,
prev_point
)
,
read_from_1d_arrf2
(
refined_features,
loc
)
},
1
}
)
;
return
;
}
}
}
//
There
is
no
found
match
for
this
point
write_to_1d_arrvec
(
matches_buf,
loc,
invalid_vector
)
;
}
//
Returns
the
position
of
the
given
point
after
the
transform
is
applied
static
float2
transformed_point
(
float2
p,
__global
const
float
*transform
)
{
float2
ret
;
ret.x
=
p.x
*
transform[0]
+
p.y
*
transform[1]
+
transform[2]
;
ret.y
=
p.x
*
transform[3]
+
p.y
*
transform[4]
+
transform[5]
;
return
ret
;
}
//
Performs
the
given
transform
on
the
src
image
__kernel
void
transform
(
__read_only
image2d_t
src,
__write_only
image2d_t
dst,
__global
const
float
*transform
)
{
int2
loc
=
(
int2
)(
get_global_id
(
0
)
,
get_global_id
(
1
))
;
float2
norm
=
convert_float2
(
get_image_dim
(
src
))
;
write_imagef
(
dst,
loc,
read_imagef
(
src,
sampler_linear_mirror,
transformed_point
((
float2
)(
loc.x,
loc.y
)
,
transform
)
/
norm
)
)
;
}
//
Returns
the
new
location
of
the
given
point
using
the
given
crop
bounding
box
//
and
the
width
and
height
of
the
original
frame.
static
float2
cropped_point
(
float2
p,
float2
top_left,
float2
bottom_right,
int2
orig_dim
)
{
float2
ret
;
float
crop_width
=
bottom_right.x
-
top_left.x
;
float
crop_height
=
bottom_right.y
-
top_left.y
;
float
width_norm
=
p.x
/
(
float
)
orig_dim.x
;
float
height_norm
=
p.y
/
(
float
)
orig_dim.y
;
ret.x
=
(
width_norm
*
crop_width
)
+
top_left.x
;
ret.y
=
(
height_norm
*
crop_height
)
+
((
float
)
orig_dim.y
-
bottom_right.y
)
;
return
ret
;
}
//
Upscales
the
given
cropped
region
to
the
size
of
the
original
frame
__kernel
void
crop_upscale
(
__read_only
image2d_t
src,
__write_only
image2d_t
dst,
float2
top_left,
float2
bottom_right
)
{
int2
loc
=
(
int2
)(
get_global_id
(
0
)
,
get_global_id
(
1
))
;
write_imagef
(
dst,
loc,
read_imagef
(
src,
sampler_linear,
cropped_point
((
float2
)(
loc.x,
loc.y
)
,
top_left,
bottom_right,
get_image_dim
(
dst
))
)
)
;
}
//
Draws
boxes
to
represent
the
given
point
matches
and
uses
the
given
transform
//
and
crop
info
to
make
sure
their
positions
are
accurate
on
the
transformed
frame.
//
//
model_matches
is
an
array
of
three
points
that
were
used
by
the
RANSAC
process
//
to
generate
the
given
transform
__kernel
void
draw_debug_info
(
__write_only
image2d_t
dst,
__global
const
MotionVector
*matches,
__global
const
MotionVector
*model_matches,
int
num_model_matches,
__global
const
float
*transform
)
{
int
loc
=
get_global_id
(
0
)
;
MotionVector
vec
=
matches[loc]
;
//
Black
box:
matched
point
that
RANSAC
considered
an
outlier
float4
big_rect_color
=
(
float4
)(
0.1f,
0.1f,
0.1f,
1.0f
)
;
if
(
vec.should_consider
)
{
//
Green
box:
matched
point
that
RANSAC
considered
an
inlier
big_rect_color
=
(
float4
)(
0.0f,
1.0f,
0.0f,
1.0f
)
;
}
for
(
int
i
=
0
; i < num_model_matches; i++) {
if
(
vec.p.p2.x
==
model_matches[i].p.p2.x
&&
vec.p.p2.y
==
model_matches[i].p.p2.y
)
{
//
Orange
box:
point
used
to
calculate
model
big_rect_color
=
(
float4
)(
1.0f,
0.5f,
0.0f,
1.0f
)
;
}
}
float2
transformed_p1
=
transformed_point
(
vec.p.p1,
transform
)
;
float2
transformed_p2
=
transformed_point
(
vec.p.p2,
transform
)
;
draw_box
(
dst,
(
int2
)(
transformed_p2.x,
transformed_p2.y
)
,
big_rect_color,
5
)
;
//
Small
light
blue
box:
the
point
in
the
previous
frame
draw_box
(
dst,
(
int2
)(
transformed_p1.x,
transformed_p1.y
)
,
(
float4
)(
0.0f,
0.3f,
0.7f,
1.0f
)
,
3
)
;
}
libavfilter/opencl_source.h
View file @
b29c7bcb
...
...
@@ -23,6 +23,7 @@ extern const char *ff_opencl_source_avgblur;
extern
const
char
*
ff_opencl_source_colorkey
;
extern
const
char
*
ff_opencl_source_colorspace_common
;
extern
const
char
*
ff_opencl_source_convolution
;
extern
const
char
*
ff_opencl_source_deshake
;
extern
const
char
*
ff_opencl_source_neighbor
;
extern
const
char
*
ff_opencl_source_nlmeans
;
extern
const
char
*
ff_opencl_source_overlay
;
...
...
libavfilter/version.h
View file @
b29c7bcb
...
...
@@ -31,7 +31,7 @@
#define LIBAVFILTER_VERSION_MAJOR 7
#define LIBAVFILTER_VERSION_MINOR 58
#define LIBAVFILTER_VERSION_MICRO 10
0
#define LIBAVFILTER_VERSION_MICRO 10
1
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \
...
...
libavfilter/vf_deshake_opencl.c
0 → 100644
View file @
b29c7bcb
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
* Copyright (C) 2009, Willow Garage Inc., all rights reserved.
* Copyright (C) 2013, OpenCV Foundation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistribution's of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistribution's in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * The name of the copyright holders may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the Intel Corporation or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include <stdbool.h>
#include <float.h>
#include <libavutil/lfg.h>
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/fifo.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "libavutil/pixfmt.h"
#include "avfilter.h"
#include "framequeue.h"
#include "filters.h"
#include "transform.h"
#include "formats.h"
#include "internal.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"
/*
This filter matches feature points between frames (dealing with outliers) and then
uses the matches to estimate an affine transform between frames. This transform is
decomposed into various values (translation, scale, rotation) and the values are
summed relative to the start of the video to obtain on absolute camera position
for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
in a new path that is turned back into an affine transform and applied to each
frame to render it.
High-level overview:
All of the work to extract motion data from frames occurs in queue_frame. Motion data
is buffered in a smoothing window, so queue_frame simply computes the absolute camera
positions and places them in ringbuffers.
filter_frame is responsible for looking at the absolute camera positions currently
in the ringbuffers, applying the gaussian filter, and then transforming the frames.
*/
// Number of bits for BRIEF descriptors
#define BREIFN 512
// Size of the patch from which a BRIEF descriptor is extracted
// This is the size used in OpenCV
#define BRIEF_PATCH_SIZE 31
#define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)
#define MATCHES_CONTIG_SIZE 2000
#define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)
typedef
struct
PointPair
{
// Previous frame
cl_float2
p1
;
// Current frame
cl_float2
p2
;
}
PointPair
;
typedef
struct
MotionVector
{
PointPair
p
;
// Used to mark vectors as potential outliers
cl_int
should_consider
;
}
MotionVector
;
// Denotes the indices for the different types of motion in the ringbuffers array
enum
RingbufferIndices
{
RingbufX
,
RingbufY
,
RingbufRot
,
RingbufScaleX
,
RingbufScaleY
,
// Should always be last
RingbufCount
};
// Struct that holds data for drawing point match debug data
typedef
struct
DebugMatches
{
MotionVector
*
matches
;
// The points used to calculate the affine transform for a frame
MotionVector
model_matches
[
3
];
int
num_matches
;
// For cases where we couldn't calculate a model
int
num_model_matches
;
}
DebugMatches
;
// Groups together the ringbuffers that store absolute distortion / position values
// for each frame
typedef
struct
AbsoluteFrameMotion
{
// Array with the various ringbuffers, indexed via the RingbufferIndices enum
AVFifoBuffer
*
ringbuffers
[
RingbufCount
];
// Offset to get to the current frame being processed
// (not in bytes)
int
curr_frame_offset
;
// Keeps track of where the start and end of contiguous motion data is (to
// deal with cases where no motion data is found between two frames)
int
data_start_offset
;
int
data_end_offset
;
AVFifoBuffer
*
debug_matches
;
}
AbsoluteFrameMotion
;
// Takes care of freeing the arrays within the DebugMatches inside of the
// debug_matches ringbuffer and then freeing the buffer itself.
static
void
free_debug_matches
(
AbsoluteFrameMotion
*
afm
)
{
DebugMatches
dm
;
if
(
!
afm
->
debug_matches
)
{
return
;
}
while
(
av_fifo_size
(
afm
->
debug_matches
)
>
0
)
{
av_fifo_generic_read
(
afm
->
debug_matches
,
&
dm
,
sizeof
(
DebugMatches
),
NULL
);
av_freep
(
&
dm
.
matches
);
}
av_fifo_freep
(
&
afm
->
debug_matches
);
}
// Stores the translation, scale, rotation, and skew deltas between two frames
typedef
struct
FrameDelta
{
cl_float2
translation
;
float
rotation
;
cl_float2
scale
;
cl_float2
skew
;
}
FrameDelta
;
typedef
struct
SimilarityMatrix
{
// The 2x3 similarity matrix
double
matrix
[
6
];
}
SimilarityMatrix
;
typedef
struct
CropInfo
{
// The top left corner of the bounding box for the crop
cl_float2
top_left
;
// The bottom right corner of the bounding box for the crop
cl_float2
bottom_right
;
}
CropInfo
;
// Returned from function that determines start and end values for iteration
// around the current frame in a ringbuffer
typedef
struct
IterIndices
{
int
start
;
int
end
;
}
IterIndices
;
typedef
struct
DeshakeOpenCLContext
{
OpenCLFilterContext
ocf
;
// Whether or not the above `OpenCLFilterContext` has been initialized
int
initialized
;
// These variables are used in the activate callback
int64_t
duration
;
bool
eof
;
// State for random number generation
AVLFG
alfg
;
// FIFO frame queue used to buffer future frames for processing
FFFrameQueue
fq
;
// Ringbuffers for frame positions
AbsoluteFrameMotion
abs_motion
;
// The number of frames' motion to consider before and after the frame we are
// smoothing
int
smooth_window
;
// The number of the frame we are currently processing
int
curr_frame
;
// Stores a 1d array of normalised gaussian kernel values for convolution
float
*
gauss_kernel
;
// Buffer for error values used in RANSAC code
float
*
ransac_err
;
// Information regarding how to crop the smoothed luminance (or RGB) planes
CropInfo
crop_y
;
// Information regarding how to crop the smoothed chroma planes
CropInfo
crop_uv
;
// Whether or not we are processing YUV input (as oppposed to RGB)
bool
is_yuv
;
// The underlying format of the hardware surfaces
int
sw_format
;
// Buffer to copy `matches` into for the CPU to work with
MotionVector
*
matches_host
;
MotionVector
*
matches_contig_host
;
MotionVector
*
inliers
;
cl_command_queue
command_queue
;
cl_kernel
kernel_grayscale
;
cl_kernel
kernel_harris_response
;
cl_kernel
kernel_refine_features
;
cl_kernel
kernel_brief_descriptors
;
cl_kernel
kernel_match_descriptors
;
cl_kernel
kernel_transform
;
cl_kernel
kernel_crop_upscale
;
// Stores a frame converted to grayscale
cl_mem
grayscale
;
// Stores the harris response for a frame (measure of "cornerness" for each pixel)
cl_mem
harris_buf
;
// Detected features after non-maximum suppression and sub-pixel refinement
cl_mem
refined_features
;
// Saved from the previous frame
cl_mem
prev_refined_features
;
// BRIEF sampling pattern that is randomly initialized
cl_mem
brief_pattern
;
// Feature point descriptors for the current frame
cl_mem
descriptors
;
// Feature point descriptors for the previous frame
cl_mem
prev_descriptors
;
// Vectors between points in current and previous frame
cl_mem
matches
;
cl_mem
matches_contig
;
// Holds the matrix to transform luminance (or RGB) with
cl_mem
transform_y
;
// Holds the matrix to transform chroma with
cl_mem
transform_uv
;
// Configurable options
int
tripod_mode
;
int
debug_on
;
int
should_crop
;
// Whether or not feature points should be refined at a sub-pixel level
cl_int
refine_features
;
// If the user sets a value other than the default, 0, this percentage is
// translated into a sigma value ranging from 0.5 to 40.0
float
smooth_percent
;
// This number is multiplied by the video frame rate to determine the size
// of the smooth window
float
smooth_window_multiplier
;
// Debug stuff
cl_kernel
kernel_draw_debug_info
;
cl_mem
debug_matches
;
cl_mem
debug_model_matches
;
// These store the total time spent executing the different kernels in nanoseconds
unsigned
long
long
grayscale_time
;
unsigned
long
long
harris_response_time
;
unsigned
long
long
refine_features_time
;
unsigned
long
long
brief_descriptors_time
;
unsigned
long
long
match_descriptors_time
;
unsigned
long
long
transform_time
;
unsigned
long
long
crop_upscale_time
;
// Time spent copying matched features from the device to the host
unsigned
long
long
read_buf_time
;
}
DeshakeOpenCLContext
;
// Returns a random uniformly-distributed number in [low, high]
static
int
rand_in
(
int
low
,
int
high
,
AVLFG
*
alfg
)
{
return
(
av_lfg_get
(
alfg
)
%
(
high
-
low
))
+
low
;
}
// Returns the average execution time for an event given the total time and the
// number of frames processed.
static
double
averaged_event_time_ms
(
unsigned
long
long
total_time
,
int
num_frames
)
{
return
(
double
)
total_time
/
(
double
)
num_frames
/
1000000
.
0
;
}
// The following code is loosely ported from OpenCV
// Estimates affine transform from 3 point pairs
// model is a 2x3 matrix:
// a b c
// d e f
static
void
run_estimate_kernel
(
const
MotionVector
*
point_pairs
,
double
*
model
)
{
// src points
double
x1
=
point_pairs
[
0
].
p
.
p1
.
s
[
0
];
double
y1
=
point_pairs
[
0
].
p
.
p1
.
s
[
1
];
double
x2
=
point_pairs
[
1
].
p
.
p1
.
s
[
0
];
double
y2
=
point_pairs
[
1
].
p
.
p1
.
s
[
1
];
double
x3
=
point_pairs
[
2
].
p
.
p1
.
s
[
0
];
double
y3
=
point_pairs
[
2
].
p
.
p1
.
s
[
1
];
// dest points
double
X1
=
point_pairs
[
0
].
p
.
p2
.
s
[
0
];
double
Y1
=
point_pairs
[
0
].
p
.
p2
.
s
[
1
];
double
X2
=
point_pairs
[
1
].
p
.
p2
.
s
[
0
];
double
Y2
=
point_pairs
[
1
].
p
.
p2
.
s
[
1
];
double
X3
=
point_pairs
[
2
].
p
.
p2
.
s
[
0
];
double
Y3
=
point_pairs
[
2
].
p
.
p2
.
s
[
1
];
double
d
=
1
.
0
/
(
x1
*
(
y2
-
y3
)
+
x2
*
(
y3
-
y1
)
+
x3
*
(
y1
-
y2
)
);
model
[
0
]
=
d
*
(
X1
*
(
y2
-
y3
)
+
X2
*
(
y3
-
y1
)
+
X3
*
(
y1
-
y2
)
);
model
[
1
]
=
d
*
(
X1
*
(
x3
-
x2
)
+
X2
*
(
x1
-
x3
)
+
X3
*
(
x2
-
x1
)
);
model
[
2
]
=
d
*
(
X1
*
(
x2
*
y3
-
x3
*
y2
)
+
X2
*
(
x3
*
y1
-
x1
*
y3
)
+
X3
*
(
x1
*
y2
-
x2
*
y1
)
);
model
[
3
]
=
d
*
(
Y1
*
(
y2
-
y3
)
+
Y2
*
(
y3
-
y1
)
+
Y3
*
(
y1
-
y2
)
);
model
[
4
]
=
d
*
(
Y1
*
(
x3
-
x2
)
+
Y2
*
(
x1
-
x3
)
+
Y3
*
(
x2
-
x1
)
);
model
[
5
]
=
d
*
(
Y1
*
(
x2
*
y3
-
x3
*
y2
)
+
Y2
*
(
x3
*
y1
-
x1
*
y3
)
+
Y3
*
(
x1
*
y2
-
x2
*
y1
)
);
}
// Checks that the 3 points in the given array are not collinear
static
bool
points_not_collinear
(
const
cl_float2
**
points
)
{
int
j
,
k
,
i
=
2
;
for
(
j
=
0
;
j
<
i
;
j
++
)
{
double
dx1
=
points
[
j
]
->
s
[
0
]
-
points
[
i
]
->
s
[
0
];
double
dy1
=
points
[
j
]
->
s
[
1
]
-
points
[
i
]
->
s
[
1
];
for
(
k
=
0
;
k
<
j
;
k
++
)
{
double
dx2
=
points
[
k
]
->
s
[
0
]
-
points
[
i
]
->
s
[
0
];
double
dy2
=
points
[
k
]
->
s
[
1
]
-
points
[
i
]
->
s
[
1
];
// Assuming a 3840 x 2160 video with a point at (0, 0) and one at
// (3839, 2159), this prevents a third point from being within roughly
// 0.5 of a pixel of the line connecting the two on both axes
if
(
fabs
(
dx2
*
dy1
-
dy2
*
dx1
)
<=
1
.
0
)
{
return
false
;
}
}
}
return
true
;
}
// Checks a subset of 3 point pairs to make sure that the points are not collinear
// and not too close to each other
static
bool
check_subset
(
const
MotionVector
*
pairs_subset
)
{
const
cl_float2
*
prev_points
[]
=
{
&
pairs_subset
[
0
].
p
.
p1
,
&
pairs_subset
[
1
].
p
.
p1
,
&
pairs_subset
[
2
].
p
.
p1
};
const
cl_float2
*
curr_points
[]
=
{
&
pairs_subset
[
0
].
p
.
p2
,
&
pairs_subset
[
1
].
p
.
p2
,
&
pairs_subset
[
2
].
p
.
p2
};
return
points_not_collinear
(
prev_points
)
&&
points_not_collinear
(
curr_points
);
}
// Selects a random subset of 3 points from point_pairs and places them in pairs_subset
static
bool
get_subset
(
AVLFG
*
alfg
,
const
MotionVector
*
point_pairs
,
const
int
num_point_pairs
,
MotionVector
*
pairs_subset
,
int
max_attempts
)
{
int
idx
[
3
];
int
i
=
0
,
j
,
iters
=
0
;
for
(;
iters
<
max_attempts
;
iters
++
)
{
for
(
i
=
0
;
i
<
3
&&
iters
<
max_attempts
;)
{
int
idx_i
=
0
;
for
(;;)
{
idx_i
=
idx
[
i
]
=
rand_in
(
0
,
num_point_pairs
,
alfg
);
for
(
j
=
0
;
j
<
i
;
j
++
)
{
if
(
idx_i
==
idx
[
j
])
{
break
;
}
}
if
(
j
==
i
)
{
break
;
}
}
pairs_subset
[
i
]
=
point_pairs
[
idx
[
i
]];
i
++
;
}
if
(
i
==
3
&&
!
check_subset
(
pairs_subset
))
{
continue
;
}
break
;
}
return
i
==
3
&&
iters
<
max_attempts
;
}
// Computes the error for each of the given points based on the given model.
static
void
compute_error
(
const
MotionVector
*
point_pairs
,
const
int
num_point_pairs
,
const
double
*
model
,
float
*
err
)
{
double
F0
=
model
[
0
],
F1
=
model
[
1
],
F2
=
model
[
2
];
double
F3
=
model
[
3
],
F4
=
model
[
4
],
F5
=
model
[
5
];
for
(
int
i
=
0
;
i
<
num_point_pairs
;
i
++
)
{
const
cl_float2
*
f
=
&
point_pairs
[
i
].
p
.
p1
;
const
cl_float2
*
t
=
&
point_pairs
[
i
].
p
.
p2
;
double
a
=
F0
*
f
->
s
[
0
]
+
F1
*
f
->
s
[
1
]
+
F2
-
t
->
s
[
0
];
double
b
=
F3
*
f
->
s
[
0
]
+
F4
*
f
->
s
[
1
]
+
F5
-
t
->
s
[
1
];
err
[
i
]
=
a
*
a
+
b
*
b
;
}
}
// Determines which of the given point matches are inliers for the given model
// based on the specified threshold.
//
// err must be an array of num_point_pairs length
static
int
find_inliers
(
MotionVector
*
point_pairs
,
const
int
num_point_pairs
,
const
double
*
model
,
float
*
err
,
double
thresh
)
{
float
t
=
(
float
)(
thresh
*
thresh
);
int
i
,
n
=
num_point_pairs
,
num_inliers
=
0
;
compute_error
(
point_pairs
,
num_point_pairs
,
model
,
err
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
if
(
err
[
i
]
<=
t
)
{
// This is an inlier
point_pairs
[
i
].
should_consider
=
true
;
num_inliers
+=
1
;
}
else
{
point_pairs
[
i
].
should_consider
=
false
;
}
}
return
num_inliers
;
}
// Determines the number of iterations required to achieve the desired confidence level.
//
// The equation used to determine the number of iterations to do is:
// 1 - confidence = (1 - inlier_probability^num_points)^num_iters
//
// Solving for num_iters:
//
// num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
//
// A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
// under the 'Parameters' heading
static
int
ransac_update_num_iters
(
double
confidence
,
double
num_outliers
,
int
max_iters
)
{
double
num
,
denom
;
confidence
=
av_clipd
(
confidence
,
0
.
0
,
1
.
0
);
num_outliers
=
av_clipd
(
num_outliers
,
0
.
0
,
1
.
0
);
// avoid inf's & nan's
num
=
FFMAX
(
1
.
0
-
confidence
,
DBL_MIN
);
denom
=
1
.
0
-
pow
(
1
.
0
-
num_outliers
,
3
);
if
(
denom
<
DBL_MIN
)
{
return
0
;
}
num
=
log
(
num
);
denom
=
log
(
denom
);
return
denom
>=
0
||
-
num
>=
max_iters
*
(
-
denom
)
?
max_iters
:
(
int
)
round
(
num
/
denom
);
}
// Estimates an affine transform between the given pairs of points using RANdom
// SAmple Consensus
static
bool
estimate_affine_2d
(
DeshakeOpenCLContext
*
deshake_ctx
,
MotionVector
*
point_pairs
,
DebugMatches
*
debug_matches
,
const
int
num_point_pairs
,
double
*
model_out
,
const
double
threshold
,
const
int
max_iters
,
const
double
confidence
)
{
bool
result
=
false
;
double
best_model
[
6
],
model
[
6
];
MotionVector
pairs_subset
[
3
],
best_pairs
[
3
];
int
iter
,
niters
=
FFMAX
(
max_iters
,
1
);
int
good_count
,
max_good_count
=
0
;
// We need at least 3 points to build a model from
if
(
num_point_pairs
<
3
)
{
return
false
;
}
else
if
(
num_point_pairs
==
3
)
{
// There are only 3 points, so RANSAC doesn't apply here
run_estimate_kernel
(
point_pairs
,
model_out
);
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
point_pairs
[
i
].
should_consider
=
true
;
}
return
true
;
}
for
(
iter
=
0
;
iter
<
niters
;
++
iter
)
{
bool
found
=
get_subset
(
&
deshake_ctx
->
alfg
,
point_pairs
,
num_point_pairs
,
pairs_subset
,
10000
);
if
(
!
found
)
{
if
(
iter
==
0
)
{
return
false
;
}
break
;
}
run_estimate_kernel
(
pairs_subset
,
model
);
good_count
=
find_inliers
(
point_pairs
,
num_point_pairs
,
model
,
deshake_ctx
->
ransac_err
,
threshold
);
if
(
good_count
>
FFMAX
(
max_good_count
,
2
))
{
for
(
int
mi
=
0
;
mi
<
6
;
++
mi
)
{
best_model
[
mi
]
=
model
[
mi
];
}
for
(
int
pi
=
0
;
pi
<
3
;
pi
++
)
{
best_pairs
[
pi
]
=
pairs_subset
[
pi
];
}
max_good_count
=
good_count
;
niters
=
ransac_update_num_iters
(
confidence
,
(
double
)(
num_point_pairs
-
good_count
)
/
num_point_pairs
,
niters
);
}
}
if
(
max_good_count
>
0
)
{
for
(
int
mi
=
0
;
mi
<
6
;
++
mi
)
{
model_out
[
mi
]
=
best_model
[
mi
];
}
for
(
int
pi
=
0
;
pi
<
3
;
++
pi
)
{
debug_matches
->
model_matches
[
pi
]
=
best_pairs
[
pi
];
}
debug_matches
->
num_model_matches
=
3
;
// Find the inliers again for the best model for debugging
find_inliers
(
point_pairs
,
num_point_pairs
,
best_model
,
deshake_ctx
->
ransac_err
,
threshold
);
result
=
true
;
}
return
result
;
}
// "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
// total error
static
void
optimize_model
(
DeshakeOpenCLContext
*
deshake_ctx
,
MotionVector
*
best_pairs
,
MotionVector
*
inliers
,
const
int
num_inliers
,
float
best_err
,
double
*
model_out
)
{
float
move_x_val
=
0
.
01
;
float
move_y_val
=
0
.
01
;
bool
move_x
=
true
;
float
old_move_x_val
=
0
;
double
model
[
6
];
int
last_changed
=
0
;
for
(
int
iters
=
0
;
iters
<
200
;
iters
++
)
{
float
total_err
=
0
;
if
(
move_x
)
{
best_pairs
[
0
].
p
.
p2
.
s
[
0
]
+=
move_x_val
;
}
else
{
best_pairs
[
0
].
p
.
p2
.
s
[
0
]
+=
move_y_val
;
}
run_estimate_kernel
(
best_pairs
,
model
);
compute_error
(
inliers
,
num_inliers
,
model
,
deshake_ctx
->
ransac_err
);
for
(
int
j
=
0
;
j
<
num_inliers
;
j
++
)
{
total_err
+=
deshake_ctx
->
ransac_err
[
j
];
}
if
(
total_err
<
best_err
)
{
for
(
int
mi
=
0
;
mi
<
6
;
++
mi
)
{
model_out
[
mi
]
=
model
[
mi
];
}
best_err
=
total_err
;
last_changed
=
iters
;
}
else
{
// Undo the change
if
(
move_x
)
{
best_pairs
[
0
].
p
.
p2
.
s
[
0
]
-=
move_x_val
;
}
else
{
best_pairs
[
0
].
p
.
p2
.
s
[
0
]
-=
move_y_val
;
}
if
(
iters
-
last_changed
>
4
)
{
// We've already improved the model as much as we can
break
;
}
old_move_x_val
=
move_x_val
;
if
(
move_x
)
{
move_x_val
*=
-
1
;
}
else
{
move_y_val
*=
-
1
;
}
if
(
old_move_x_val
<
0
)
{
move_x
=
false
;
}
else
{
move_x
=
true
;
}
}
}
}
// Uses a process similar to that of RANSAC to find a transform that minimizes
// the total error for a set of point matches determined to be inliers
//
// (Pick random subsets, compute model, find total error, iterate until error
// is minimized.)
static
bool
minimize_error
(
DeshakeOpenCLContext
*
deshake_ctx
,
MotionVector
*
inliers
,
DebugMatches
*
debug_matches
,
const
int
num_inliers
,
double
*
model_out
,
const
int
max_iters
)
{
bool
result
=
false
;
float
best_err
=
FLT_MAX
;
double
best_model
[
6
],
model
[
6
];
MotionVector
pairs_subset
[
3
],
best_pairs
[
3
];
for
(
int
i
=
0
;
i
<
max_iters
;
i
++
)
{
float
total_err
=
0
;
bool
found
=
get_subset
(
&
deshake_ctx
->
alfg
,
inliers
,
num_inliers
,
pairs_subset
,
10000
);
if
(
!
found
)
{
if
(
i
==
0
)
{
return
false
;
}
break
;
}
run_estimate_kernel
(
pairs_subset
,
model
);
compute_error
(
inliers
,
num_inliers
,
model
,
deshake_ctx
->
ransac_err
);
for
(
int
j
=
0
;
j
<
num_inliers
;
j
++
)
{
total_err
+=
deshake_ctx
->
ransac_err
[
j
];
}
if
(
total_err
<
best_err
)
{
for
(
int
mi
=
0
;
mi
<
6
;
++
mi
)
{
best_model
[
mi
]
=
model
[
mi
];
}
for
(
int
pi
=
0
;
pi
<
3
;
pi
++
)
{
best_pairs
[
pi
]
=
pairs_subset
[
pi
];
}
best_err
=
total_err
;
}
}
for
(
int
mi
=
0
;
mi
<
6
;
++
mi
)
{
model_out
[
mi
]
=
best_model
[
mi
];
}
for
(
int
pi
=
0
;
pi
<
3
;
++
pi
)
{
debug_matches
->
model_matches
[
pi
]
=
best_pairs
[
pi
];
}
debug_matches
->
num_model_matches
=
3
;
result
=
true
;
optimize_model
(
deshake_ctx
,
best_pairs
,
inliers
,
num_inliers
,
best_err
,
model_out
);
return
result
;
}
// End code from OpenCV
// Decomposes a similarity matrix into translation, rotation, scale, and skew
//
// See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
static
FrameDelta
decompose_transform
(
double
*
model
)
{
FrameDelta
ret
;
double
a
=
model
[
0
];
double
c
=
model
[
1
];
double
e
=
model
[
2
];
double
b
=
model
[
3
];
double
d
=
model
[
4
];
double
f
=
model
[
5
];
double
delta
=
a
*
d
-
b
*
c
;
ret
.
translation
.
s
[
0
]
=
e
;
ret
.
translation
.
s
[
1
]
=
f
;
// This is the QR method
if
(
a
!=
0
||
b
!=
0
)
{
double
r
=
hypot
(
a
,
b
);
ret
.
rotation
=
FFSIGN
(
b
)
*
acos
(
a
/
r
);
ret
.
scale
.
s
[
0
]
=
r
;
ret
.
scale
.
s
[
1
]
=
delta
/
r
;
ret
.
skew
.
s
[
0
]
=
atan
((
a
*
c
+
b
*
d
)
/
(
r
*
r
));
ret
.
skew
.
s
[
1
]
=
0
;
}
else
if
(
c
!=
0
||
d
!=
0
)
{
double
s
=
sqrt
(
c
*
c
+
d
*
d
);
ret
.
rotation
=
M_PI
/
2
-
FFSIGN
(
d
)
*
acos
(
-
c
/
s
);
ret
.
scale
.
s
[
0
]
=
delta
/
s
;
ret
.
scale
.
s
[
1
]
=
s
;
ret
.
skew
.
s
[
0
]
=
0
;
ret
.
skew
.
s
[
1
]
=
atan
((
a
*
c
+
b
*
d
)
/
(
s
*
s
));
}
// otherwise there is only translation
return
ret
;
}
// Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
static
int
make_vectors_contig
(
DeshakeOpenCLContext
*
deshake_ctx
,
int
size_y
,
int
size_x
)
{
int
num_vectors
=
0
;
for
(
int
i
=
0
;
i
<
size_y
;
++
i
)
{
for
(
int
j
=
0
;
j
<
size_x
;
++
j
)
{
MotionVector
v
=
deshake_ctx
->
matches_host
[
j
+
i
*
size_x
];
if
(
v
.
should_consider
)
{
deshake_ctx
->
matches_contig_host
[
num_vectors
]
=
v
;
++
num_vectors
;
}
// Make sure we do not exceed the amount of space we allocated for these vectors
if
(
num_vectors
==
MATCHES_CONTIG_SIZE
-
1
)
{
return
num_vectors
;
}
}
}
return
num_vectors
;
}
// Returns the gaussian kernel value for the given x coordinate and sigma value
static
float
gaussian_for
(
int
x
,
float
sigma
)
{
return
1
.
0
f
/
expf
(((
float
)
x
*
(
float
)
x
)
/
(
2
.
0
f
*
sigma
*
sigma
));
}
// Makes a normalized gaussian kernel of the given length for the given sigma
// and places it in gauss_kernel
static
void
make_gauss_kernel
(
float
*
gauss_kernel
,
float
length
,
float
sigma
)
{
float
gauss_sum
=
0
;
int
window_half
=
length
/
2
;
for
(
int
i
=
0
;
i
<
length
;
++
i
)
{
float
val
=
gaussian_for
(
i
-
window_half
,
sigma
);
gauss_sum
+=
val
;
gauss_kernel
[
i
]
=
val
;
}
// Normalize the gaussian values
for
(
int
i
=
0
;
i
<
length
;
++
i
)
{
gauss_kernel
[
i
]
/=
gauss_sum
;
}
}
// Returns indices to start and end iteration at in order to iterate over a window
// of length size centered at the current frame in a ringbuffer
//
// Always returns numbers that result in a window of length size, even if that
// means specifying negative indices or indices past the end of the values in the
// ringbuffers. Make sure you clip indices appropriately within your loop.
static
IterIndices
start_end_for
(
DeshakeOpenCLContext
*
deshake_ctx
,
int
length
)
{
IterIndices
indices
;
indices
.
start
=
deshake_ctx
->
abs_motion
.
curr_frame_offset
-
(
length
/
2
);
indices
.
end
=
deshake_ctx
->
abs_motion
.
curr_frame_offset
+
(
length
/
2
)
+
(
length
%
2
);
return
indices
;
}
// Sets val to the value in the given ringbuffer at the given offset, taking care of
// clipping the offset into the appropriate range
static
void
ringbuf_float_at
(
DeshakeOpenCLContext
*
deshake_ctx
,
AVFifoBuffer
*
values
,
float
*
val
,
int
offset
)
{
int
clip_start
,
clip_end
,
offset_clipped
;
if
(
deshake_ctx
->
abs_motion
.
data_end_offset
!=
-
1
)
{
clip_end
=
deshake_ctx
->
abs_motion
.
data_end_offset
;
}
else
{
// This expression represents the last valid index in the buffer,
// which we use repeatedly at the end of the video.
clip_end
=
deshake_ctx
->
smooth_window
-
(
av_fifo_space
(
values
)
/
sizeof
(
float
))
-
1
;
}
if
(
deshake_ctx
->
abs_motion
.
data_start_offset
!=
-
1
)
{
clip_start
=
deshake_ctx
->
abs_motion
.
data_start_offset
;
}
else
{
// Negative indices will occur at the start of the video, and we want
// them to be clipped to 0 in order to repeatedly use the position of
// the first frame.
clip_start
=
0
;
}
offset_clipped
=
av_clip
(
offset
,
clip_start
,
clip_end
);
av_fifo_generic_peek_at
(
values
,
val
,
offset_clipped
*
sizeof
(
float
),
sizeof
(
float
),
NULL
);
}
// Returns smoothed current frame value of the given buffer of floats based on the
// given Gaussian kernel and its length (also the window length, centered around the
// current frame) and the "maximum value" of the motion.
//
// This "maximum value" should be the width / height of the image in the case of
// translation and an empirically chosen constant for rotation / scale.
//
// The sigma chosen to generate the final gaussian kernel with used to smooth the
// camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
// adaptively chosen.
static
float
smooth
(
DeshakeOpenCLContext
*
deshake_ctx
,
float
*
gauss_kernel
,
int
length
,
float
max_val
,
AVFifoBuffer
*
values
)
{
float
new_large_s
=
0
,
new_small_s
=
0
,
new_best
=
0
,
old
,
diff_between
,
percent_of_max
,
inverted_percent
;
IterIndices
indices
=
start_end_for
(
deshake_ctx
,
length
);
float
large_sigma
=
40
.
0
f
;
float
small_sigma
=
2
.
0
f
;
float
best_sigma
;
if
(
deshake_ctx
->
smooth_percent
)
{
best_sigma
=
(
large_sigma
-
0
.
5
f
)
*
deshake_ctx
->
smooth_percent
+
0
.
5
f
;
}
else
{
// Strategy to adaptively smooth trajectory:
//
// 1. Smooth path with large and small sigma values
// 2. Take the absolute value of the difference between them
// 3. Get a percentage by putting the difference over the "max value"
// 4, Invert the percentage
// 5. Calculate a new sigma value weighted towards the larger sigma value
// 6. Determine final smoothed trajectory value using that sigma
make_gauss_kernel
(
gauss_kernel
,
length
,
large_sigma
);
for
(
int
i
=
indices
.
start
,
j
=
0
;
i
<
indices
.
end
;
++
i
,
++
j
)
{
ringbuf_float_at
(
deshake_ctx
,
values
,
&
old
,
i
);
new_large_s
+=
old
*
gauss_kernel
[
j
];
}
make_gauss_kernel
(
gauss_kernel
,
length
,
small_sigma
);
for
(
int
i
=
indices
.
start
,
j
=
0
;
i
<
indices
.
end
;
++
i
,
++
j
)
{
ringbuf_float_at
(
deshake_ctx
,
values
,
&
old
,
i
);
new_small_s
+=
old
*
gauss_kernel
[
j
];
}
diff_between
=
fabsf
(
new_large_s
-
new_small_s
);
percent_of_max
=
diff_between
/
max_val
;
inverted_percent
=
1
-
percent_of_max
;
best_sigma
=
large_sigma
*
powf
(
inverted_percent
,
40
);
}
make_gauss_kernel
(
gauss_kernel
,
length
,
best_sigma
);
for
(
int
i
=
indices
.
start
,
j
=
0
;
i
<
indices
.
end
;
++
i
,
++
j
)
{
ringbuf_float_at
(
deshake_ctx
,
values
,
&
old
,
i
);
new_best
+=
old
*
gauss_kernel
[
j
];
}
return
new_best
;
}
// Returns the position of the given point after the transform is applied
static
cl_float2
transformed_point
(
float
x
,
float
y
,
float
*
transform
)
{
cl_float2
ret
;
ret
.
s
[
0
]
=
x
*
transform
[
0
]
+
y
*
transform
[
1
]
+
transform
[
2
];
ret
.
s
[
1
]
=
x
*
transform
[
3
]
+
y
*
transform
[
4
]
+
transform
[
5
];
return
ret
;
}
// Creates an affine transform that scales from the center of a frame
static
void
transform_center_scale
(
float
x_shift
,
float
y_shift
,
float
angle
,
float
scale_x
,
float
scale_y
,
float
center_w
,
float
center_h
,
float
*
matrix
)
{
cl_float2
center_s
;
float
center_s_w
,
center_s_h
;
ff_get_matrix
(
0
,
0
,
0
,
scale_x
,
scale_y
,
matrix
);
center_s
=
transformed_point
(
center_w
,
center_h
,
matrix
);
center_s_w
=
center_w
-
center_s
.
s
[
0
];
center_s_h
=
center_h
-
center_s
.
s
[
1
];
ff_get_matrix
(
x_shift
+
center_s_w
,
y_shift
+
center_s_h
,
angle
,
scale_x
,
scale_y
,
matrix
);
}
// Determines the crop necessary to eliminate black borders from a smoothed frame
// and updates target crop accordingly
static
void
update_needed_crop
(
CropInfo
*
crop
,
float
*
transform
,
float
frame_width
,
float
frame_height
)
{
float
new_width
,
new_height
,
adjusted_width
,
adjusted_height
,
adjusted_x
,
adjusted_y
;
cl_float2
top_left
=
transformed_point
(
0
,
0
,
transform
);
cl_float2
top_right
=
transformed_point
(
frame_width
,
0
,
transform
);
cl_float2
bottom_left
=
transformed_point
(
0
,
frame_height
,
transform
);
cl_float2
bottom_right
=
transformed_point
(
frame_width
,
frame_height
,
transform
);
float
ar_h
=
frame_height
/
frame_width
;
float
ar_w
=
frame_width
/
frame_height
;
if
(
crop
->
bottom_right
.
s
[
0
]
==
0
)
{
// The crop hasn't been set to the original size of the plane
crop
->
bottom_right
.
s
[
0
]
=
frame_width
;
crop
->
bottom_right
.
s
[
1
]
=
frame_height
;
}
crop
->
top_left
.
s
[
0
]
=
FFMAX3
(
crop
->
top_left
.
s
[
0
],
top_left
.
s
[
0
],
bottom_left
.
s
[
0
]
);
crop
->
top_left
.
s
[
1
]
=
FFMAX3
(
crop
->
top_left
.
s
[
1
],
top_left
.
s
[
1
],
top_right
.
s
[
1
]
);
crop
->
bottom_right
.
s
[
0
]
=
FFMIN3
(
crop
->
bottom_right
.
s
[
0
],
bottom_right
.
s
[
0
],
top_right
.
s
[
0
]
);
crop
->
bottom_right
.
s
[
1
]
=
FFMIN3
(
crop
->
bottom_right
.
s
[
1
],
bottom_right
.
s
[
1
],
bottom_left
.
s
[
1
]
);
// Make sure our potentially new bounding box has the same aspect ratio
new_height
=
crop
->
bottom_right
.
s
[
1
]
-
crop
->
top_left
.
s
[
1
];
new_width
=
crop
->
bottom_right
.
s
[
0
]
-
crop
->
top_left
.
s
[
0
];
adjusted_width
=
new_height
*
ar_w
;
adjusted_x
=
crop
->
bottom_right
.
s
[
0
]
-
adjusted_width
;
if
(
adjusted_x
>=
crop
->
top_left
.
s
[
0
])
{
crop
->
top_left
.
s
[
0
]
=
adjusted_x
;
}
else
{
adjusted_height
=
new_width
*
ar_h
;
adjusted_y
=
crop
->
bottom_right
.
s
[
1
]
-
adjusted_height
;
crop
->
top_left
.
s
[
1
]
=
adjusted_y
;
}
}
static
av_cold
void
deshake_opencl_uninit
(
AVFilterContext
*
avctx
)
{
DeshakeOpenCLContext
*
ctx
=
avctx
->
priv
;
cl_int
cle
;
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
av_fifo_freep
(
&
ctx
->
abs_motion
.
ringbuffers
[
i
]);
if
(
ctx
->
debug_on
)
free_debug_matches
(
&
ctx
->
abs_motion
);
if
(
ctx
->
gauss_kernel
)
av_freep
(
&
ctx
->
gauss_kernel
);
if
(
ctx
->
ransac_err
)
av_freep
(
&
ctx
->
ransac_err
);
if
(
ctx
->
matches_host
)
av_freep
(
&
ctx
->
matches_host
);
if
(
ctx
->
matches_contig_host
)
av_freep
(
&
ctx
->
matches_contig_host
);
if
(
ctx
->
inliers
)
av_freep
(
&
ctx
->
inliers
);
ff_framequeue_free
(
&
ctx
->
fq
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_grayscale
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_harris_response
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_refine_features
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_brief_descriptors
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_match_descriptors
);
CL_RELEASE_KERNEL
(
ctx
->
kernel_crop_upscale
);
if
(
ctx
->
debug_on
)
CL_RELEASE_KERNEL
(
ctx
->
kernel_draw_debug_info
);
CL_RELEASE_QUEUE
(
ctx
->
command_queue
);
if
(
!
ctx
->
is_yuv
)
CL_RELEASE_MEMORY
(
ctx
->
grayscale
);
CL_RELEASE_MEMORY
(
ctx
->
harris_buf
);
CL_RELEASE_MEMORY
(
ctx
->
refined_features
);
CL_RELEASE_MEMORY
(
ctx
->
prev_refined_features
);
CL_RELEASE_MEMORY
(
ctx
->
brief_pattern
);
CL_RELEASE_MEMORY
(
ctx
->
descriptors
);
CL_RELEASE_MEMORY
(
ctx
->
prev_descriptors
);
CL_RELEASE_MEMORY
(
ctx
->
matches
);
CL_RELEASE_MEMORY
(
ctx
->
matches_contig
);
CL_RELEASE_MEMORY
(
ctx
->
transform_y
);
CL_RELEASE_MEMORY
(
ctx
->
transform_uv
);
if
(
ctx
->
debug_on
)
{
CL_RELEASE_MEMORY
(
ctx
->
debug_matches
);
CL_RELEASE_MEMORY
(
ctx
->
debug_model_matches
);
}
ff_opencl_filter_uninit
(
avctx
);
}
static
int
deshake_opencl_init
(
AVFilterContext
*
avctx
)
{
DeshakeOpenCLContext
*
ctx
=
avctx
->
priv
;
AVFilterLink
*
outlink
=
avctx
->
outputs
[
0
];
AVFilterLink
*
inlink
=
avctx
->
inputs
[
0
];
// Pointer to the host-side pattern buffer to be initialized and then copied
// to the GPU
PointPair
*
pattern_host
;
cl_int
cle
;
int
err
;
cl_ulong8
zeroed_ulong8
;
FFFrameQueueGlobal
fqg
;
cl_image_format
grayscale_format
;
cl_image_desc
grayscale_desc
;
cl_command_queue_properties
queue_props
;
const
enum
AVPixelFormat
disallowed_formats
[
14
]
=
{
AV_PIX_FMT_GBRP
,
AV_PIX_FMT_GBRP9BE
,
AV_PIX_FMT_GBRP9LE
,
AV_PIX_FMT_GBRP10BE
,
AV_PIX_FMT_GBRP10LE
,
AV_PIX_FMT_GBRP16BE
,
AV_PIX_FMT_GBRP16LE
,
AV_PIX_FMT_GBRAP
,
AV_PIX_FMT_GBRAP16BE
,
AV_PIX_FMT_GBRAP16LE
,
AV_PIX_FMT_GBRAP12BE
,
AV_PIX_FMT_GBRAP12LE
,
AV_PIX_FMT_GBRAP10BE
,
AV_PIX_FMT_GBRAP10LE
};
// Number of elements for an array
const
int
image_grid_32
=
ROUNDED_UP_DIV
(
outlink
->
h
,
32
)
*
ROUNDED_UP_DIV
(
outlink
->
w
,
32
);
const
int
descriptor_buf_size
=
image_grid_32
*
(
BREIFN
/
8
);
const
int
features_buf_size
=
image_grid_32
*
sizeof
(
cl_float2
);
const
AVHWFramesContext
*
hw_frames_ctx
=
(
AVHWFramesContext
*
)
inlink
->
hw_frames_ctx
->
data
;
const
AVPixFmtDescriptor
*
desc
=
av_pix_fmt_desc_get
(
hw_frames_ctx
->
sw_format
);
av_assert0
(
hw_frames_ctx
);
av_assert0
(
desc
);
ff_framequeue_global_init
(
&
fqg
);
ff_framequeue_init
(
&
ctx
->
fq
,
&
fqg
);
ctx
->
eof
=
false
;
ctx
->
smooth_window
=
(
int
)(
av_q2d
(
avctx
->
inputs
[
0
]
->
frame_rate
)
*
ctx
->
smooth_window_multiplier
);
ctx
->
curr_frame
=
0
;
memset
(
&
zeroed_ulong8
,
0
,
sizeof
(
cl_ulong8
));
ctx
->
gauss_kernel
=
av_malloc_array
(
ctx
->
smooth_window
,
sizeof
(
float
));
if
(
!
ctx
->
gauss_kernel
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
ctx
->
ransac_err
=
av_malloc_array
(
MATCHES_CONTIG_SIZE
,
sizeof
(
float
));
if
(
!
ctx
->
ransac_err
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
ctx
->
abs_motion
.
ringbuffers
[
i
]
=
av_fifo_alloc_array
(
ctx
->
smooth_window
,
sizeof
(
float
)
);
if
(
!
ctx
->
abs_motion
.
ringbuffers
[
i
])
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
}
if
(
ctx
->
debug_on
)
{
ctx
->
abs_motion
.
debug_matches
=
av_fifo_alloc_array
(
ctx
->
smooth_window
/
2
,
sizeof
(
DebugMatches
)
);
if
(
!
ctx
->
abs_motion
.
debug_matches
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
}
ctx
->
abs_motion
.
curr_frame_offset
=
0
;
ctx
->
abs_motion
.
data_start_offset
=
-
1
;
ctx
->
abs_motion
.
data_end_offset
=
-
1
;
pattern_host
=
av_malloc_array
(
BREIFN
,
sizeof
(
PointPair
));
if
(
!
pattern_host
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
ctx
->
matches_host
=
av_malloc_array
(
image_grid_32
,
sizeof
(
MotionVector
));
if
(
!
ctx
->
matches_host
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
ctx
->
matches_contig_host
=
av_malloc_array
(
MATCHES_CONTIG_SIZE
,
sizeof
(
MotionVector
));
if
(
!
ctx
->
matches_contig_host
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
ctx
->
inliers
=
av_malloc_array
(
MATCHES_CONTIG_SIZE
,
sizeof
(
MotionVector
));
if
(
!
ctx
->
inliers
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
// Initializing the patch pattern for building BREIF descriptors with
av_lfg_init
(
&
ctx
->
alfg
,
234342424
);
for
(
int
i
=
0
;
i
<
BREIFN
;
++
i
)
{
PointPair
pair
;
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
pair
.
p1
.
s
[
j
]
=
rand_in
(
-
BRIEF_PATCH_SIZE_HALF
,
BRIEF_PATCH_SIZE_HALF
+
1
,
&
ctx
->
alfg
);
pair
.
p2
.
s
[
j
]
=
rand_in
(
-
BRIEF_PATCH_SIZE_HALF
,
BRIEF_PATCH_SIZE_HALF
+
1
,
&
ctx
->
alfg
);
}
pattern_host
[
i
]
=
pair
;
}
for
(
int
i
=
0
;
i
<
14
;
i
++
)
{
if
(
ctx
->
sw_format
==
disallowed_formats
[
i
])
{
av_log
(
avctx
,
AV_LOG_ERROR
,
"unsupported format in deshake_opencl.
\n
"
);
err
=
AVERROR
(
ENOSYS
);
goto
fail
;
}
}
if
(
desc
->
flags
&
AV_PIX_FMT_FLAG_RGB
)
{
ctx
->
is_yuv
=
false
;
}
else
{
ctx
->
is_yuv
=
true
;
}
ctx
->
sw_format
=
hw_frames_ctx
->
sw_format
;
err
=
ff_opencl_filter_load_program
(
avctx
,
&
ff_opencl_source_deshake
,
1
);
if
(
err
<
0
)
goto
fail
;
if
(
ctx
->
debug_on
)
{
queue_props
=
CL_QUEUE_PROFILING_ENABLE
;
}
else
{
queue_props
=
0
;
}
ctx
->
command_queue
=
clCreateCommandQueue
(
ctx
->
ocf
.
hwctx
->
context
,
ctx
->
ocf
.
hwctx
->
device_id
,
queue_props
,
&
cle
);
CL_FAIL_ON_ERROR
(
AVERROR
(
EIO
),
"Failed to create OpenCL command queue %d.
\n
"
,
cle
);
CL_CREATE_KERNEL
(
ctx
,
grayscale
);
CL_CREATE_KERNEL
(
ctx
,
harris_response
);
CL_CREATE_KERNEL
(
ctx
,
refine_features
);
CL_CREATE_KERNEL
(
ctx
,
brief_descriptors
);
CL_CREATE_KERNEL
(
ctx
,
match_descriptors
);
CL_CREATE_KERNEL
(
ctx
,
transform
);
CL_CREATE_KERNEL
(
ctx
,
crop_upscale
);
if
(
ctx
->
debug_on
)
CL_CREATE_KERNEL
(
ctx
,
draw_debug_info
);
if
(
!
ctx
->
is_yuv
)
{
grayscale_format
.
image_channel_order
=
CL_R
;
grayscale_format
.
image_channel_data_type
=
CL_FLOAT
;
grayscale_desc
=
(
cl_image_desc
)
{
.
image_type
=
CL_MEM_OBJECT_IMAGE2D
,
.
image_width
=
outlink
->
w
,
.
image_height
=
outlink
->
h
,
.
image_depth
=
0
,
.
image_array_size
=
0
,
.
image_row_pitch
=
0
,
.
image_slice_pitch
=
0
,
.
num_mip_levels
=
0
,
.
num_samples
=
0
,
.
buffer
=
NULL
,
};
ctx
->
grayscale
=
clCreateImage
(
ctx
->
ocf
.
hwctx
->
context
,
0
,
&
grayscale_format
,
&
grayscale_desc
,
NULL
,
&
cle
);
CL_FAIL_ON_ERROR
(
AVERROR
(
EIO
),
"Failed to create grayscale image: %d.
\n
"
,
cle
);
}
CL_CREATE_BUFFER
(
ctx
,
harris_buf
,
outlink
->
h
*
outlink
->
w
*
sizeof
(
float
));
CL_CREATE_BUFFER
(
ctx
,
refined_features
,
features_buf_size
);
CL_CREATE_BUFFER
(
ctx
,
prev_refined_features
,
features_buf_size
);
CL_CREATE_BUFFER_FLAGS
(
ctx
,
brief_pattern
,
CL_MEM_READ_WRITE
|
CL_MEM_COPY_HOST_PTR
,
BREIFN
*
sizeof
(
PointPair
),
pattern_host
);
CL_CREATE_BUFFER
(
ctx
,
descriptors
,
descriptor_buf_size
);
CL_CREATE_BUFFER
(
ctx
,
prev_descriptors
,
descriptor_buf_size
);
CL_CREATE_BUFFER
(
ctx
,
matches
,
image_grid_32
*
sizeof
(
MotionVector
));
CL_CREATE_BUFFER
(
ctx
,
matches_contig
,
MATCHES_CONTIG_SIZE
*
sizeof
(
MotionVector
));
CL_CREATE_BUFFER
(
ctx
,
transform_y
,
9
*
sizeof
(
float
));
CL_CREATE_BUFFER
(
ctx
,
transform_uv
,
9
*
sizeof
(
float
));
if
(
ctx
->
debug_on
)
{
CL_CREATE_BUFFER
(
ctx
,
debug_matches
,
MATCHES_CONTIG_SIZE
*
sizeof
(
MotionVector
));
CL_CREATE_BUFFER
(
ctx
,
debug_model_matches
,
3
*
sizeof
(
MotionVector
));
}
ctx
->
initialized
=
1
;
av_freep
(
&
pattern_host
);
return
0
;
fail:
if
(
!
pattern_host
)
av_freep
(
&
pattern_host
);
return
err
;
}
// Logs debug information about the transform data
static
void
transform_debug
(
AVFilterContext
*
avctx
,
float
*
new_vals
,
float
*
old_vals
,
int
curr_frame
)
{
av_log
(
avctx
,
AV_LOG_VERBOSE
,
"Frame %d:
\n
"
"
\t
frame moved from: %f x, %f y
\n
"
"
\t
to: %f x, %f y
\n
"
"
\t
rotated from: %f degrees
\n
"
"
\t
to: %f degrees
\n
"
"
\t
scaled from: %f x, %f y
\n
"
"
\t
to: %f x, %f y
\n
"
"
\n
"
"
\t
frame moved by: %f x, %f y
\n
"
"
\t
rotated by: %f degrees
\n
"
"
\t
scaled by: %f x, %f y
\n
"
,
curr_frame
,
old_vals
[
RingbufX
],
old_vals
[
RingbufY
],
new_vals
[
RingbufX
],
new_vals
[
RingbufY
],
old_vals
[
RingbufRot
]
*
(
180
.
0
/
M_PI
),
new_vals
[
RingbufRot
]
*
(
180
.
0
/
M_PI
),
old_vals
[
RingbufScaleX
],
old_vals
[
RingbufScaleY
],
new_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
],
old_vals
[
RingbufX
]
-
new_vals
[
RingbufX
],
old_vals
[
RingbufY
]
-
new_vals
[
RingbufY
],
old_vals
[
RingbufRot
]
*
(
180
.
0
/
M_PI
)
-
new_vals
[
RingbufRot
]
*
(
180
.
0
/
M_PI
),
new_vals
[
RingbufScaleX
]
/
old_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
]
/
old_vals
[
RingbufScaleY
]
);
}
// Uses the buffered motion information to determine a transform that smooths the
// given frame and applies it
static
int
filter_frame
(
AVFilterLink
*
link
,
AVFrame
*
input_frame
)
{
AVFilterContext
*
avctx
=
link
->
dst
;
AVFilterLink
*
outlink
=
avctx
->
outputs
[
0
];
DeshakeOpenCLContext
*
deshake_ctx
=
avctx
->
priv
;
AVFrame
*
cropped_frame
=
NULL
,
*
transformed_frame
=
NULL
;
int
err
;
cl_int
cle
;
float
new_vals
[
RingbufCount
];
float
old_vals
[
RingbufCount
];
// Luma (in the case of YUV) transform, or just the transform in the case of RGB
float
transform_y
[
9
];
// Chroma transform
float
transform_uv
[
9
];
// Luma crop transform (or RGB)
float
transform_crop_y
[
9
];
// Chroma crop transform
float
transform_crop_uv
[
9
];
float
transform_debug_rgb
[
9
];
size_t
global_work
[
2
];
int64_t
duration
;
cl_mem
src
,
transformed
,
dst
;
cl_mem
transforms
[
3
];
CropInfo
crops
[
3
];
cl_event
transform_event
,
crop_upscale_event
;
DebugMatches
debug_matches
;
cl_int
num_model_matches
;
const
float
center_w
=
(
float
)
input_frame
->
width
/
2
;
const
float
center_h
=
(
float
)
input_frame
->
height
/
2
;
const
AVPixFmtDescriptor
*
desc
=
av_pix_fmt_desc_get
(
deshake_ctx
->
sw_format
);
const
int
chroma_width
=
AV_CEIL_RSHIFT
(
input_frame
->
width
,
desc
->
log2_chroma_w
);
const
int
chroma_height
=
AV_CEIL_RSHIFT
(
input_frame
->
height
,
desc
->
log2_chroma_h
);
const
float
center_w_chroma
=
(
float
)
chroma_width
/
2
;
const
float
center_h_chroma
=
(
float
)
chroma_height
/
2
;
const
float
luma_w_over_chroma_w
=
((
float
)
input_frame
->
width
/
(
float
)
chroma_width
);
const
float
luma_h_over_chroma_h
=
((
float
)
input_frame
->
height
/
(
float
)
chroma_height
);
if
(
deshake_ctx
->
debug_on
)
{
av_fifo_generic_read
(
deshake_ctx
->
abs_motion
.
debug_matches
,
&
debug_matches
,
sizeof
(
DebugMatches
),
NULL
);
}
if
(
input_frame
->
pkt_duration
)
{
duration
=
input_frame
->
pkt_duration
;
}
else
{
duration
=
av_rescale_q
(
1
,
av_inv_q
(
outlink
->
frame_rate
),
outlink
->
time_base
);
}
deshake_ctx
->
duration
=
input_frame
->
pts
+
duration
;
// Get the absolute transform data for this frame
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
av_fifo_generic_peek_at
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
],
&
old_vals
[
i
],
deshake_ctx
->
abs_motion
.
curr_frame_offset
*
sizeof
(
float
),
sizeof
(
float
),
NULL
);
}
if
(
deshake_ctx
->
tripod_mode
)
{
// If tripod mode is turned on we simply undo all motion relative to the
// first frame
new_vals
[
RingbufX
]
=
0
.
0
f
;
new_vals
[
RingbufY
]
=
0
.
0
f
;
new_vals
[
RingbufRot
]
=
0
.
0
f
;
new_vals
[
RingbufScaleX
]
=
1
.
0
f
;
new_vals
[
RingbufScaleY
]
=
1
.
0
f
;
}
else
{
// Tripod mode is off and we need to smooth a moving camera
new_vals
[
RingbufX
]
=
smooth
(
deshake_ctx
,
deshake_ctx
->
gauss_kernel
,
deshake_ctx
->
smooth_window
,
input_frame
->
width
,
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufX
]
);
new_vals
[
RingbufY
]
=
smooth
(
deshake_ctx
,
deshake_ctx
->
gauss_kernel
,
deshake_ctx
->
smooth_window
,
input_frame
->
height
,
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufY
]
);
new_vals
[
RingbufRot
]
=
smooth
(
deshake_ctx
,
deshake_ctx
->
gauss_kernel
,
deshake_ctx
->
smooth_window
,
M_PI
/
4
,
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufRot
]
);
new_vals
[
RingbufScaleX
]
=
smooth
(
deshake_ctx
,
deshake_ctx
->
gauss_kernel
,
deshake_ctx
->
smooth_window
,
2
.
0
f
,
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufScaleX
]
);
new_vals
[
RingbufScaleY
]
=
smooth
(
deshake_ctx
,
deshake_ctx
->
gauss_kernel
,
deshake_ctx
->
smooth_window
,
2
.
0
f
,
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufScaleY
]
);
}
transform_center_scale
(
old_vals
[
RingbufX
]
-
new_vals
[
RingbufX
],
old_vals
[
RingbufY
]
-
new_vals
[
RingbufY
],
old_vals
[
RingbufRot
]
-
new_vals
[
RingbufRot
],
new_vals
[
RingbufScaleX
]
/
old_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
]
/
old_vals
[
RingbufScaleY
],
center_w
,
center_h
,
transform_y
);
transform_center_scale
(
(
old_vals
[
RingbufX
]
-
new_vals
[
RingbufX
])
/
luma_w_over_chroma_w
,
(
old_vals
[
RingbufY
]
-
new_vals
[
RingbufY
])
/
luma_h_over_chroma_h
,
old_vals
[
RingbufRot
]
-
new_vals
[
RingbufRot
],
new_vals
[
RingbufScaleX
]
/
old_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
]
/
old_vals
[
RingbufScaleY
],
center_w_chroma
,
center_h_chroma
,
transform_uv
);
CL_BLOCKING_WRITE_BUFFER
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
transform_y
,
9
*
sizeof
(
float
),
transform_y
,
NULL
);
CL_BLOCKING_WRITE_BUFFER
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
transform_uv
,
9
*
sizeof
(
float
),
transform_uv
,
NULL
);
if
(
deshake_ctx
->
debug_on
)
transform_debug
(
avctx
,
new_vals
,
old_vals
,
deshake_ctx
->
curr_frame
);
cropped_frame
=
ff_get_video_buffer
(
outlink
,
outlink
->
w
,
outlink
->
h
);
if
(
!
cropped_frame
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
transformed_frame
=
ff_get_video_buffer
(
outlink
,
outlink
->
w
,
outlink
->
h
);
if
(
!
transformed_frame
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
transforms
[
0
]
=
deshake_ctx
->
transform_y
;
transforms
[
1
]
=
transforms
[
2
]
=
deshake_ctx
->
transform_uv
;
for
(
int
p
=
0
;
p
<
FF_ARRAY_ELEMS
(
transformed_frame
->
data
);
p
++
)
{
// Transform all of the planes appropriately
src
=
(
cl_mem
)
input_frame
->
data
[
p
];
transformed
=
(
cl_mem
)
transformed_frame
->
data
[
p
];
if
(
!
transformed
)
break
;
err
=
ff_opencl_filter_work_size_from_image
(
avctx
,
global_work
,
input_frame
,
p
,
0
);
if
(
err
<
0
)
goto
fail
;
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_transform
,
global_work
,
NULL
,
&
transform_event
,
{
sizeof
(
cl_mem
),
&
src
},
{
sizeof
(
cl_mem
),
&
transformed
},
{
sizeof
(
cl_mem
),
&
transforms
[
p
]
},
);
}
if
(
deshake_ctx
->
debug_on
&&
!
deshake_ctx
->
is_yuv
&&
debug_matches
.
num_matches
>
0
)
{
CL_BLOCKING_WRITE_BUFFER
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
debug_matches
,
debug_matches
.
num_matches
*
sizeof
(
MotionVector
),
debug_matches
.
matches
,
NULL
);
CL_BLOCKING_WRITE_BUFFER
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
debug_model_matches
,
debug_matches
.
num_model_matches
*
sizeof
(
MotionVector
),
debug_matches
.
model_matches
,
NULL
);
num_model_matches
=
debug_matches
.
num_model_matches
;
// Invert the transform
transform_center_scale
(
new_vals
[
RingbufX
]
-
old_vals
[
RingbufX
],
new_vals
[
RingbufY
]
-
old_vals
[
RingbufY
],
new_vals
[
RingbufRot
]
-
old_vals
[
RingbufRot
],
old_vals
[
RingbufScaleX
]
/
new_vals
[
RingbufScaleX
],
old_vals
[
RingbufScaleY
]
/
new_vals
[
RingbufScaleY
],
center_w
,
center_h
,
transform_debug_rgb
);
CL_BLOCKING_WRITE_BUFFER
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
transform_y
,
9
*
sizeof
(
float
),
transform_debug_rgb
,
NULL
);
transformed
=
(
cl_mem
)
transformed_frame
->
data
[
0
];
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_draw_debug_info
,
(
size_t
[]){
debug_matches
.
num_matches
},
NULL
,
NULL
,
{
sizeof
(
cl_mem
),
&
transformed
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
debug_matches
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
debug_model_matches
},
{
sizeof
(
cl_int
),
&
num_model_matches
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
transform_y
}
);
}
if
(
deshake_ctx
->
should_crop
)
{
// Generate transforms for cropping
transform_center_scale
(
(
old_vals
[
RingbufX
]
-
new_vals
[
RingbufX
])
/
5
,
(
old_vals
[
RingbufY
]
-
new_vals
[
RingbufY
])
/
5
,
(
old_vals
[
RingbufRot
]
-
new_vals
[
RingbufRot
])
/
5
,
new_vals
[
RingbufScaleX
]
/
old_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
]
/
old_vals
[
RingbufScaleY
],
center_w
,
center_h
,
transform_crop_y
);
update_needed_crop
(
&
deshake_ctx
->
crop_y
,
transform_crop_y
,
input_frame
->
width
,
input_frame
->
height
);
transform_center_scale
(
(
old_vals
[
RingbufX
]
-
new_vals
[
RingbufX
])
/
(
5
*
luma_w_over_chroma_w
),
(
old_vals
[
RingbufY
]
-
new_vals
[
RingbufY
])
/
(
5
*
luma_h_over_chroma_h
),
(
old_vals
[
RingbufRot
]
-
new_vals
[
RingbufRot
])
/
5
,
new_vals
[
RingbufScaleX
]
/
old_vals
[
RingbufScaleX
],
new_vals
[
RingbufScaleY
]
/
old_vals
[
RingbufScaleY
],
center_w_chroma
,
center_h_chroma
,
transform_crop_uv
);
update_needed_crop
(
&
deshake_ctx
->
crop_uv
,
transform_crop_uv
,
chroma_width
,
chroma_height
);
crops
[
0
]
=
deshake_ctx
->
crop_y
;
crops
[
1
]
=
crops
[
2
]
=
deshake_ctx
->
crop_uv
;
for
(
int
p
=
0
;
p
<
FF_ARRAY_ELEMS
(
cropped_frame
->
data
);
p
++
)
{
// Crop all of the planes appropriately
dst
=
(
cl_mem
)
cropped_frame
->
data
[
p
];
transformed
=
(
cl_mem
)
transformed_frame
->
data
[
p
];
if
(
!
dst
)
break
;
err
=
ff_opencl_filter_work_size_from_image
(
avctx
,
global_work
,
input_frame
,
p
,
0
);
if
(
err
<
0
)
goto
fail
;
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_crop_upscale
,
global_work
,
NULL
,
&
crop_upscale_event
,
{
sizeof
(
cl_mem
),
&
transformed
},
{
sizeof
(
cl_mem
),
&
dst
},
{
sizeof
(
cl_float2
),
&
crops
[
p
].
top_left
},
{
sizeof
(
cl_float2
),
&
crops
[
p
].
bottom_right
},
);
}
}
if
(
deshake_ctx
->
curr_frame
<
deshake_ctx
->
smooth_window
/
2
)
{
// This means we are somewhere at the start of the video. We need to
// increment the current frame offset until it reaches the center of
// the ringbuffers (as the current frame will be located there for
// the rest of the video).
//
// The end of the video is taken care of by draining motion data
// one-by-one out of the buffer, causing the (at that point fixed)
// offset to move towards later frames' data.
++
deshake_ctx
->
abs_motion
.
curr_frame_offset
;
}
if
(
deshake_ctx
->
abs_motion
.
data_end_offset
!=
-
1
)
{
// Keep the end offset in sync with the frame it's supposed to be
// positioned at
--
deshake_ctx
->
abs_motion
.
data_end_offset
;
if
(
deshake_ctx
->
abs_motion
.
data_end_offset
==
deshake_ctx
->
abs_motion
.
curr_frame_offset
-
1
)
{
// The end offset would be the start of the new video sequence; flip to
// start offset
deshake_ctx
->
abs_motion
.
data_end_offset
=
-
1
;
deshake_ctx
->
abs_motion
.
data_start_offset
=
deshake_ctx
->
abs_motion
.
curr_frame_offset
;
}
}
else
if
(
deshake_ctx
->
abs_motion
.
data_start_offset
!=
-
1
)
{
// Keep the start offset in sync with the frame it's supposed to be
// positioned at
--
deshake_ctx
->
abs_motion
.
data_start_offset
;
}
if
(
deshake_ctx
->
debug_on
)
{
deshake_ctx
->
transform_time
+=
ff_opencl_get_event_time
(
transform_event
);
if
(
deshake_ctx
->
should_crop
)
{
deshake_ctx
->
crop_upscale_time
+=
ff_opencl_get_event_time
(
crop_upscale_event
);
}
}
++
deshake_ctx
->
curr_frame
;
if
(
deshake_ctx
->
debug_on
)
av_freep
(
&
debug_matches
.
matches
);
if
(
deshake_ctx
->
should_crop
)
{
err
=
av_frame_copy_props
(
cropped_frame
,
input_frame
);
if
(
err
<
0
)
goto
fail
;
av_frame_free
(
&
transformed_frame
);
av_frame_free
(
&
input_frame
);
return
ff_filter_frame
(
outlink
,
cropped_frame
);
}
else
{
err
=
av_frame_copy_props
(
transformed_frame
,
input_frame
);
if
(
err
<
0
)
goto
fail
;
av_frame_free
(
&
cropped_frame
);
av_frame_free
(
&
input_frame
);
return
ff_filter_frame
(
outlink
,
transformed_frame
);
}
fail:
clFinish
(
deshake_ctx
->
command_queue
);
if
(
deshake_ctx
->
debug_on
)
if
(
debug_matches
.
matches
)
av_freep
(
&
debug_matches
.
matches
);
av_frame_free
(
&
input_frame
);
av_frame_free
(
&
transformed_frame
);
av_frame_free
(
&
cropped_frame
);
return
err
;
}
// Add the given frame to the frame queue to eventually be processed.
//
// Also determines the motion from the previous frame and updates the stored
// motion information accordingly.
static
int
queue_frame
(
AVFilterLink
*
link
,
AVFrame
*
input_frame
)
{
AVFilterContext
*
avctx
=
link
->
dst
;
DeshakeOpenCLContext
*
deshake_ctx
=
avctx
->
priv
;
int
err
;
int
num_vectors
;
int
num_inliers
=
0
;
cl_int
cle
;
FrameDelta
relative
;
SimilarityMatrix
model
;
size_t
global_work
[
2
];
size_t
harris_global_work
[
2
];
size_t
grid_32_global_work
[
2
];
int
grid_32_h
,
grid_32_w
;
size_t
local_work
[
2
];
cl_mem
src
,
temp
;
float
prev_vals
[
5
];
float
new_vals
[
5
];
cl_event
grayscale_event
,
harris_response_event
,
refine_features_event
,
brief_event
,
match_descriptors_event
,
read_buf_event
;
DebugMatches
debug_matches
;
num_vectors
=
0
;
local_work
[
0
]
=
8
;
local_work
[
1
]
=
8
;
err
=
ff_opencl_filter_work_size_from_image
(
avctx
,
global_work
,
input_frame
,
0
,
0
);
if
(
err
<
0
)
goto
fail
;
err
=
ff_opencl_filter_work_size_from_image
(
avctx
,
harris_global_work
,
input_frame
,
0
,
8
);
if
(
err
<
0
)
goto
fail
;
err
=
ff_opencl_filter_work_size_from_image
(
avctx
,
grid_32_global_work
,
input_frame
,
0
,
32
);
if
(
err
<
0
)
goto
fail
;
// We want a single work-item for each 32x32 block of pixels in the input frame
grid_32_global_work
[
0
]
/=
32
;
grid_32_global_work
[
1
]
/=
32
;
grid_32_h
=
ROUNDED_UP_DIV
(
input_frame
->
height
,
32
);
grid_32_w
=
ROUNDED_UP_DIV
(
input_frame
->
width
,
32
);
if
(
deshake_ctx
->
is_yuv
)
{
deshake_ctx
->
grayscale
=
(
cl_mem
)
input_frame
->
data
[
0
];
}
else
{
src
=
(
cl_mem
)
input_frame
->
data
[
0
];
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_grayscale
,
global_work
,
NULL
,
&
grayscale_event
,
{
sizeof
(
cl_mem
),
&
src
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
grayscale
}
);
}
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_harris_response
,
harris_global_work
,
local_work
,
&
harris_response_event
,
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
grayscale
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
harris_buf
}
);
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_refine_features
,
grid_32_global_work
,
NULL
,
&
refine_features_event
,
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
grayscale
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
harris_buf
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
refined_features
},
{
sizeof
(
cl_int
),
&
deshake_ctx
->
refine_features
}
);
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_brief_descriptors
,
grid_32_global_work
,
NULL
,
&
brief_event
,
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
grayscale
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
refined_features
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
descriptors
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
brief_pattern
}
);
if
(
av_fifo_size
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufX
])
==
0
)
{
// This is the first frame we've been given to queue, meaning there is
// no previous frame to match descriptors to
goto
no_motion_data
;
}
CL_RUN_KERNEL_WITH_ARGS
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
kernel_match_descriptors
,
grid_32_global_work
,
NULL
,
&
match_descriptors_event
,
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
prev_refined_features
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
refined_features
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
descriptors
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
prev_descriptors
},
{
sizeof
(
cl_mem
),
&
deshake_ctx
->
matches
}
);
cle
=
clEnqueueReadBuffer
(
deshake_ctx
->
command_queue
,
deshake_ctx
->
matches
,
CL_TRUE
,
0
,
grid_32_h
*
grid_32_w
*
sizeof
(
MotionVector
),
deshake_ctx
->
matches_host
,
0
,
NULL
,
&
read_buf_event
);
CL_FAIL_ON_ERROR
(
AVERROR
(
EIO
),
"Failed to read matches to host: %d.
\n
"
,
cle
);
num_vectors
=
make_vectors_contig
(
deshake_ctx
,
grid_32_h
,
grid_32_w
);
if
(
num_vectors
<
10
)
{
// Not enough matches to get reliable motion data for this frame
//
// From this point on all data is relative to this frame rather than the
// original frame. We have to make sure that we don't mix values that were
// relative to the original frame with the new values relative to this
// frame when doing the gaussian smoothing. We keep track of where the old
// values end using this data_end_offset field in order to accomplish
// that goal.
//
// If no motion data is present for multiple frames in a short window of
// time, we leave the end where it was to avoid mixing 0s in with the
// old data (and just treat them all as part of the new values)
if
(
deshake_ctx
->
abs_motion
.
data_end_offset
==
-
1
)
{
deshake_ctx
->
abs_motion
.
data_end_offset
=
av_fifo_size
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufX
])
/
sizeof
(
float
)
-
1
;
}
goto
no_motion_data
;
}
if
(
!
estimate_affine_2d
(
deshake_ctx
,
deshake_ctx
->
matches_contig_host
,
&
debug_matches
,
num_vectors
,
model
.
matrix
,
10
.
0
,
3000
,
0
.
999999999999
))
{
goto
no_motion_data
;
}
for
(
int
i
=
0
;
i
<
num_vectors
;
i
++
)
{
if
(
deshake_ctx
->
matches_contig_host
[
i
].
should_consider
)
{
deshake_ctx
->
inliers
[
num_inliers
]
=
deshake_ctx
->
matches_contig_host
[
i
];
num_inliers
++
;
}
}
if
(
!
minimize_error
(
deshake_ctx
,
deshake_ctx
->
inliers
,
&
debug_matches
,
num_inliers
,
model
.
matrix
,
400
))
{
goto
no_motion_data
;
}
relative
=
decompose_transform
(
model
.
matrix
);
// Get the absolute transform data for the previous frame
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
av_fifo_generic_peek_at
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
],
&
prev_vals
[
i
],
av_fifo_size
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
])
-
sizeof
(
float
),
sizeof
(
float
),
NULL
);
}
new_vals
[
RingbufX
]
=
prev_vals
[
RingbufX
]
+
relative
.
translation
.
s
[
0
];
new_vals
[
RingbufY
]
=
prev_vals
[
RingbufY
]
+
relative
.
translation
.
s
[
1
];
new_vals
[
RingbufRot
]
=
prev_vals
[
RingbufRot
]
+
relative
.
rotation
;
new_vals
[
RingbufScaleX
]
=
prev_vals
[
RingbufScaleX
]
/
relative
.
scale
.
s
[
0
];
new_vals
[
RingbufScaleY
]
=
prev_vals
[
RingbufScaleY
]
/
relative
.
scale
.
s
[
1
];
if
(
deshake_ctx
->
debug_on
)
{
if
(
!
deshake_ctx
->
is_yuv
)
{
deshake_ctx
->
grayscale_time
+=
ff_opencl_get_event_time
(
grayscale_event
);
}
deshake_ctx
->
harris_response_time
+=
ff_opencl_get_event_time
(
harris_response_event
);
deshake_ctx
->
refine_features_time
+=
ff_opencl_get_event_time
(
refine_features_event
);
deshake_ctx
->
brief_descriptors_time
+=
ff_opencl_get_event_time
(
brief_event
);
deshake_ctx
->
match_descriptors_time
+=
ff_opencl_get_event_time
(
match_descriptors_event
);
deshake_ctx
->
read_buf_time
+=
ff_opencl_get_event_time
(
read_buf_event
);
}
goto
end
;
no_motion_data:
new_vals
[
RingbufX
]
=
0
.
0
f
;
new_vals
[
RingbufY
]
=
0
.
0
f
;
new_vals
[
RingbufRot
]
=
0
.
0
f
;
new_vals
[
RingbufScaleX
]
=
1
.
0
f
;
new_vals
[
RingbufScaleY
]
=
1
.
0
f
;
for
(
int
i
=
0
;
i
<
num_vectors
;
i
++
)
{
deshake_ctx
->
matches_contig_host
[
i
].
should_consider
=
false
;
}
debug_matches
.
num_model_matches
=
0
;
if
(
deshake_ctx
->
debug_on
)
{
av_log
(
avctx
,
AV_LOG_VERBOSE
,
"
\n
[ALERT] No motion data found in queue_frame, motion reset to 0
\n\n
"
);
}
goto
end
;
end:
// Swap the descriptor buffers (we don't need the previous frame's descriptors
// again so we will use that space for the next frame's descriptors)
temp
=
deshake_ctx
->
prev_descriptors
;
deshake_ctx
->
prev_descriptors
=
deshake_ctx
->
descriptors
;
deshake_ctx
->
descriptors
=
temp
;
// Same for the refined features
temp
=
deshake_ctx
->
prev_refined_features
;
deshake_ctx
->
prev_refined_features
=
deshake_ctx
->
refined_features
;
deshake_ctx
->
refined_features
=
temp
;
if
(
deshake_ctx
->
debug_on
)
{
if
(
num_vectors
==
0
)
{
debug_matches
.
matches
=
NULL
;
}
else
{
debug_matches
.
matches
=
av_malloc_array
(
num_vectors
,
sizeof
(
MotionVector
));
if
(
!
debug_matches
.
matches
)
{
err
=
AVERROR
(
ENOMEM
);
goto
fail
;
}
}
for
(
int
i
=
0
;
i
<
num_vectors
;
i
++
)
{
debug_matches
.
matches
[
i
]
=
deshake_ctx
->
matches_contig_host
[
i
];
}
debug_matches
.
num_matches
=
num_vectors
;
av_fifo_generic_write
(
deshake_ctx
->
abs_motion
.
debug_matches
,
&
debug_matches
,
sizeof
(
DebugMatches
),
NULL
);
}
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
av_fifo_generic_write
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
],
&
new_vals
[
i
],
sizeof
(
float
),
NULL
);
}
return
ff_framequeue_add
(
&
deshake_ctx
->
fq
,
input_frame
);
fail:
clFinish
(
deshake_ctx
->
command_queue
);
av_frame_free
(
&
input_frame
);
return
err
;
}
static
int
activate
(
AVFilterContext
*
ctx
)
{
AVFilterLink
*
inlink
=
ctx
->
inputs
[
0
];
AVFilterLink
*
outlink
=
ctx
->
outputs
[
0
];
DeshakeOpenCLContext
*
deshake_ctx
=
ctx
->
priv
;
AVFrame
*
frame
=
NULL
;
int
ret
,
status
;
int64_t
pts
;
FF_FILTER_FORWARD_STATUS_BACK
(
outlink
,
inlink
);
if
(
!
deshake_ctx
->
eof
)
{
ret
=
ff_inlink_consume_frame
(
inlink
,
&
frame
);
if
(
ret
<
0
)
return
ret
;
if
(
ret
>
0
)
{
if
(
!
frame
->
hw_frames_ctx
)
return
AVERROR
(
EINVAL
);
if
(
!
deshake_ctx
->
initialized
)
{
ret
=
deshake_opencl_init
(
ctx
);
if
(
ret
<
0
)
return
ret
;
}
// If there is no more space in the ringbuffers, remove the oldest
// values to make room for the new ones
if
(
av_fifo_space
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
RingbufX
])
==
0
)
{
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
av_fifo_drain
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
],
sizeof
(
float
));
}
}
ret
=
queue_frame
(
inlink
,
frame
);
if
(
ret
<
0
)
return
ret
;
if
(
ret
>=
0
)
{
// See if we have enough buffered frames to process one
//
// "enough" is half the smooth window of queued frames into the future
if
(
ff_framequeue_queued_frames
(
&
deshake_ctx
->
fq
)
>=
deshake_ctx
->
smooth_window
/
2
)
{
return
filter_frame
(
inlink
,
ff_framequeue_take
(
&
deshake_ctx
->
fq
));
}
}
}
}
if
(
!
deshake_ctx
->
eof
&&
ff_inlink_acknowledge_status
(
inlink
,
&
status
,
&
pts
))
{
if
(
status
==
AVERROR_EOF
)
{
deshake_ctx
->
eof
=
true
;
}
}
if
(
deshake_ctx
->
eof
)
{
// Finish processing the rest of the frames in the queue.
while
(
ff_framequeue_queued_frames
(
&
deshake_ctx
->
fq
)
!=
0
)
{
for
(
int
i
=
0
;
i
<
RingbufCount
;
i
++
)
{
av_fifo_drain
(
deshake_ctx
->
abs_motion
.
ringbuffers
[
i
],
sizeof
(
float
));
}
ret
=
filter_frame
(
inlink
,
ff_framequeue_take
(
&
deshake_ctx
->
fq
));
if
(
ret
<
0
)
{
return
ret
;
}
}
if
(
deshake_ctx
->
debug_on
)
{
av_log
(
ctx
,
AV_LOG_VERBOSE
,
"Average kernel execution times:
\n
"
"
\t
grayscale: %0.3f ms
\n
"
"
\t
harris_response: %0.3f ms
\n
"
"
\t
refine_features: %0.3f ms
\n
"
"
\t
brief_descriptors: %0.3f ms
\n
"
"
\t
match_descriptors: %0.3f ms
\n
"
"
\t
transform: %0.3f ms
\n
"
"
\t
crop_upscale: %0.3f ms
\n
"
"Average buffer read times:
\n
"
"
\t
features buf: %0.3f ms
\n
"
,
averaged_event_time_ms
(
deshake_ctx
->
grayscale_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
harris_response_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
refine_features_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
brief_descriptors_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
match_descriptors_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
transform_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
crop_upscale_time
,
deshake_ctx
->
curr_frame
),
averaged_event_time_ms
(
deshake_ctx
->
read_buf_time
,
deshake_ctx
->
curr_frame
)
);
}
ff_outlink_set_status
(
outlink
,
AVERROR_EOF
,
deshake_ctx
->
duration
);
return
0
;
}
if
(
!
deshake_ctx
->
eof
)
{
FF_FILTER_FORWARD_WANTED
(
outlink
,
inlink
);
}
return
FFERROR_NOT_READY
;
}
static
const
AVFilterPad
deshake_opencl_inputs
[]
=
{
{
.
name
=
"default"
,
.
type
=
AVMEDIA_TYPE_VIDEO
,
.
config_props
=
&
ff_opencl_filter_config_input
,
},
{
NULL
}
};
static
const
AVFilterPad
deshake_opencl_outputs
[]
=
{
{
.
name
=
"default"
,
.
type
=
AVMEDIA_TYPE_VIDEO
,
.
config_props
=
&
ff_opencl_filter_config_output
,
},
{
NULL
}
};
#define OFFSET(x) offsetof(DeshakeOpenCLContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static
const
AVOption
deshake_opencl_options
[]
=
{
{
"tripod"
,
"simulates a tripod by preventing any camera movement whatsoever "
"from the original frame"
,
OFFSET
(
tripod_mode
),
AV_OPT_TYPE_BOOL
,
{.
i64
=
0
},
0
,
1
,
FLAGS
},
{
"debug"
,
"turn on additional debugging information"
,
OFFSET
(
debug_on
),
AV_OPT_TYPE_BOOL
,
{.
i64
=
0
},
0
,
1
,
FLAGS
},
{
"adaptive_crop"
,
"attempt to subtly crop borders to reduce mirrored content"
,
OFFSET
(
should_crop
),
AV_OPT_TYPE_BOOL
,
{.
i64
=
1
},
0
,
1
,
FLAGS
},
{
"refine_features"
,
"refine feature point locations at a sub-pixel level"
,
OFFSET
(
refine_features
),
AV_OPT_TYPE_BOOL
,
{.
i64
=
1
},
0
,
1
,
FLAGS
},
{
"smooth_strength"
,
"smoothing strength (0 attempts to adaptively determine optimal strength)"
,
OFFSET
(
smooth_percent
),
AV_OPT_TYPE_FLOAT
,
{.
dbl
=
0
.
0
f
},
0
.
0
f
,
1
.
0
f
,
FLAGS
},
{
"smooth_window_multiplier"
,
"multiplier for number of frames to buffer for motion data"
,
OFFSET
(
smooth_window_multiplier
),
AV_OPT_TYPE_FLOAT
,
{.
dbl
=
2
.
0
},
0
.
1
,
10
.
0
,
FLAGS
},
{
NULL
}
};
AVFILTER_DEFINE_CLASS
(
deshake_opencl
);
AVFilter
ff_vf_deshake_opencl
=
{
.
name
=
"deshake_opencl"
,
.
description
=
NULL_IF_CONFIG_SMALL
(
"Feature-point based video stabilization filter"
),
.
priv_size
=
sizeof
(
DeshakeOpenCLContext
),
.
priv_class
=
&
deshake_opencl_class
,
.
init
=
&
ff_opencl_filter_init
,
.
uninit
=
&
deshake_opencl_uninit
,
.
query_formats
=
&
ff_opencl_filter_query_formats
,
.
activate
=
activate
,
.
inputs
=
deshake_opencl_inputs
,
.
outputs
=
deshake_opencl_outputs
,
.
flags_internal
=
FF_FILTER_FLAG_HWFRAME_AWARE
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment