Commit ac84f2ed authored by Donald Ovcharov's avatar Donald Ovcharov Committed by Diego Biurrun

error_resilience: K&R formatting cosmetics

Signed-off-by: 's avatarDiego Biurrun <diego@biurrun.de>
parent bbf0023b
...@@ -40,30 +40,33 @@ ...@@ -40,30 +40,33 @@
*/ */
#undef mb_intra #undef mb_intra
static void decode_mb(MpegEncContext *s, int ref){ static void decode_mb(MpegEncContext *s, int ref)
s->dest[0] = s->current_picture.f.data[0] + (s->mb_y * 16 * s->linesize) + s->mb_x * 16; {
s->dest[0] = s->current_picture.f.data[0] + (s->mb_y * 16 * s->linesize) + s->mb_x * 16;
s->dest[1] = s->current_picture.f.data[1] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift); s->dest[1] = s->current_picture.f.data[1] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift);
s->dest[2] = s->current_picture.f.data[2] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift); s->dest[2] = s->current_picture.f.data[2] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift);
if(CONFIG_H264_DECODER && s->codec_id == CODEC_ID_H264){ if (CONFIG_H264_DECODER && s->codec_id == CODEC_ID_H264) {
H264Context *h= (void*)s; H264Context *h = (void*)s;
h->mb_xy= s->mb_x + s->mb_y*s->mb_stride; h->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache)); memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache));
assert(ref>=0); assert(ref >= 0);
/* FIXME: It is possible albeit uncommon that slice references /* FIXME: It is possible albeit uncommon that slice references
* differ between slices. We take the easy approach and ignore * differ between slices. We take the easy approach and ignore
* it for now. If this turns out to have any relevance in * it for now. If this turns out to have any relevance in
* practice then correct remapping should be added. */ * practice then correct remapping should be added. */
if (ref >= h->ref_count[0]) if (ref >= h->ref_count[0])
ref=0; ref = 0;
fill_rectangle(&s->current_picture.f.ref_index[0][4*h->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&s->current_picture.f.ref_index[0][4 * h->mb_xy],
2, 2, 2, ref, 1);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(h->mv_cache[0][ scan8[0] ], 4, 4, 8, pack16to32(s->mv[0][0][0],s->mv[0][0][1]), 4); fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8,
pack16to32(s->mv[0][0][0], s->mv[0][0][1]), 4);
assert(!FRAME_MBAFF); assert(!FRAME_MBAFF);
ff_h264_hl_decode_mb(h); ff_h264_hl_decode_mb(h);
}else{ } else {
assert(ref==0); assert(ref == 0);
MPV_decode_mb(s, s->block); MPV_decode_mb(s, s->block);
} }
} }
...@@ -71,82 +74,89 @@ static void decode_mb(MpegEncContext *s, int ref){ ...@@ -71,82 +74,89 @@ static void decode_mb(MpegEncContext *s, int ref){
* @param stride the number of MVs to get to the next row * @param stride the number of MVs to get to the next row
* @param mv_step the number of MVs per row or column in a macroblock * @param mv_step the number of MVs per row or column in a macroblock
*/ */
static void set_mv_strides(MpegEncContext *s, int *mv_step, int *stride){ static void set_mv_strides(MpegEncContext *s, int *mv_step, int *stride)
if(s->codec_id == CODEC_ID_H264){ {
H264Context *h= (void*)s; if (s->codec_id == CODEC_ID_H264) {
H264Context *h = (void*)s;
assert(s->quarter_sample); assert(s->quarter_sample);
*mv_step= 4; *mv_step = 4;
*stride= h->b_stride; *stride = h->b_stride;
}else{ } else {
*mv_step= 2; *mv_step = 2;
*stride= s->b8_stride; *stride = s->b8_stride;
} }
} }
/** /**
* Replace the current MB with a flat dc-only version. * Replace the current MB with a flat dc-only version.
*/ */
static void put_dc(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y) static void put_dc(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr, int mb_x, int mb_y)
{ {
int dc, dcu, dcv, y, i; int dc, dcu, dcv, y, i;
for(i=0; i<4; i++){ for (i = 0; i < 4; i++) {
dc= s->dc_val[0][mb_x*2 + (i&1) + (mb_y*2 + (i>>1))*s->b8_stride]; dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride];
if(dc<0) dc=0; if (dc < 0)
else if(dc>2040) dc=2040; dc = 0;
for(y=0; y<8; y++){ else if (dc > 2040)
dc = 2040;
for (y = 0; y < 8; y++) {
int x; int x;
for(x=0; x<8; x++){ for (x = 0; x < 8; x++)
dest_y[x + (i&1)*8 + (y + (i>>1)*8)*s->linesize]= dc/8; dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * s->linesize] = dc / 8;
}
} }
} }
dcu = s->dc_val[1][mb_x + mb_y*s->mb_stride]; dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride];
dcv = s->dc_val[2][mb_x + mb_y*s->mb_stride]; dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride];
if (dcu<0 ) dcu=0; if (dcu < 0)
else if(dcu>2040) dcu=2040; dcu = 0;
if (dcv<0 ) dcv=0; else if (dcu > 2040)
else if(dcv>2040) dcv=2040; dcu = 2040;
for(y=0; y<8; y++){ if (dcv < 0)
dcv = 0;
else if (dcv > 2040)
dcv = 2040;
for (y = 0; y < 8; y++) {
int x; int x;
for(x=0; x<8; x++){ for (x = 0; x < 8; x++) {
dest_cb[x + y * s->uvlinesize] = dcu / 8; dest_cb[x + y * s->uvlinesize] = dcu / 8;
dest_cr[x + y * s->uvlinesize] = dcv / 8; dest_cr[x + y * s->uvlinesize] = dcv / 8;
} }
} }
} }
static void filter181(int16_t *data, int width, int height, int stride){ static void filter181(int16_t *data, int width, int height, int stride)
int x,y; {
int x, y;
/* horizontal filter */ /* horizontal filter */
for(y=1; y<height-1; y++){ for (y = 1; y < height - 1; y++) {
int prev_dc= data[0 + y*stride]; int prev_dc = data[0 + y * stride];
for(x=1; x<width-1; x++){ for (x = 1; x < width - 1; x++) {
int dc; int dc;
dc = -prev_dc +
dc= - prev_dc data[x + y * stride] * 8 -
+ data[x + y*stride]*8 data[x + 1 + y * stride];
- data[x + 1 + y*stride]; dc = (dc * 10923 + 32768) >> 16;
dc= (dc*10923 + 32768)>>16; prev_dc = data[x + y * stride];
prev_dc= data[x + y*stride]; data[x + y * stride] = dc;
data[x + y*stride]= dc;
} }
} }
/* vertical filter */ /* vertical filter */
for(x=1; x<width-1; x++){ for (x = 1; x < width - 1; x++) {
int prev_dc= data[x]; int prev_dc = data[x];
for(y=1; y<height-1; y++){ for (y = 1; y < height - 1; y++) {
int dc; int dc;
dc= - prev_dc dc = -prev_dc +
+ data[x + y *stride]*8 data[x + y * stride] * 8 -
- data[x + (y+1)*stride]; data[x + (y + 1) * stride];
dc= (dc*10923 + 32768)>>16; dc = (dc * 10923 + 32768) >> 16;
prev_dc= data[x + y*stride]; prev_dc = data[x + y * stride];
data[x + y*stride]= dc; data[x + y * stride] = dc;
} }
} }
} }
...@@ -156,81 +166,83 @@ static void filter181(int16_t *data, int width, int height, int stride){ ...@@ -156,81 +166,83 @@ static void filter181(int16_t *data, int width, int height, int stride){
* @param w width in 8 pixel blocks * @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks * @param h height in 8 pixel blocks
*/ */
static void guess_dc(MpegEncContext *s, int16_t *dc, int w, int h, int stride, int is_luma){ static void guess_dc(MpegEncContext *s, int16_t *dc, int w,
int h, int stride, int is_luma)
{
int b_x, b_y; int b_x, b_y;
for(b_y=0; b_y<h; b_y++){ for (b_y = 0; b_y < h; b_y++) {
for(b_x=0; b_x<w; b_x++){ for (b_x = 0; b_x < w; b_x++) {
int color[4]={1024,1024,1024,1024}; int color[4] = { 1024, 1024, 1024, 1024 };
int distance[4]={9999,9999,9999,9999}; int distance[4] = { 9999, 9999, 9999, 9999 };
int mb_index, error, j; int mb_index, error, j;
int64_t guess, weight_sum; int64_t guess, weight_sum;
mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride;
error = s->error_status_table[mb_index];
mb_index= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride; if (IS_INTER(s->current_picture.f.mb_type[mb_index]))
continue; // inter
error= s->error_status_table[mb_index]; if (!(error & ER_DC_ERROR))
continue; // dc-ok
if(IS_INTER(s->current_picture.f.mb_type[mb_index])) continue; //inter
if(!(error&ER_DC_ERROR)) continue; //dc-ok
/* right block */ /* right block */
for(j=b_x+1; j<w; j++){ for (j = b_x + 1; j < w; j++) {
int mb_index_j= (j>>is_luma) + (b_y>>is_luma)*s->mb_stride; int mb_index_j = (j >> is_luma) + (b_y >> is_luma) * s->mb_stride;
int error_j= s->error_status_table[mb_index_j]; int error_j = s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){ if (intra_j == 0 || !(error_j & ER_DC_ERROR)) {
color[0]= dc[j + b_y*stride]; color[0] = dc[j + b_y * stride];
distance[0]= j-b_x; distance[0] = j - b_x;
break; break;
} }
} }
/* left block */ /* left block */
for(j=b_x-1; j>=0; j--){ for (j = b_x - 1; j >= 0; j--) {
int mb_index_j= (j>>is_luma) + (b_y>>is_luma)*s->mb_stride; int mb_index_j = (j >> is_luma) + (b_y >> is_luma) * s->mb_stride;
int error_j= s->error_status_table[mb_index_j]; int error_j = s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){ if (intra_j == 0 || !(error_j & ER_DC_ERROR)) {
color[1]= dc[j + b_y*stride]; color[1] = dc[j + b_y * stride];
distance[1]= b_x-j; distance[1] = b_x - j;
break; break;
} }
} }
/* bottom block */ /* bottom block */
for(j=b_y+1; j<h; j++){ for (j = b_y + 1; j < h; j++) {
int mb_index_j= (b_x>>is_luma) + (j>>is_luma)*s->mb_stride; int mb_index_j = (b_x >> is_luma) + (j >> is_luma) * s->mb_stride;
int error_j= s->error_status_table[mb_index_j]; int error_j = s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){
color[2]= dc[b_x + j*stride]; if (intra_j == 0 || !(error_j & ER_DC_ERROR)) {
distance[2]= j-b_y; color[2] = dc[b_x + j * stride];
distance[2] = j - b_y;
break; break;
} }
} }
/* top block */ /* top block */
for(j=b_y-1; j>=0; j--){ for (j = b_y - 1; j >= 0; j--) {
int mb_index_j= (b_x>>is_luma) + (j>>is_luma)*s->mb_stride; int mb_index_j = (b_x >> is_luma) + (j >> is_luma) * s->mb_stride;
int error_j= s->error_status_table[mb_index_j]; int error_j = s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){ if (intra_j == 0 || !(error_j & ER_DC_ERROR)) {
color[3]= dc[b_x + j*stride]; color[3] = dc[b_x + j * stride];
distance[3]= b_y-j; distance[3] = b_y - j;
break; break;
} }
} }
weight_sum=0; weight_sum = 0;
guess=0; guess = 0;
for(j=0; j<4; j++){ for (j = 0; j < 4; j++) {
int64_t weight= 256*256*256*16/distance[j]; int64_t weight = 256 * 256 * 256 * 16 / distance[j];
guess+= weight*(int64_t)color[j]; guess += weight * (int64_t) color[j];
weight_sum+= weight; weight_sum += weight;
} }
guess= (guess + weight_sum/2) / weight_sum; guess = (guess + weight_sum / 2) / weight_sum;
dc[b_x + b_y * stride] = guess;
dc[b_x + b_y*stride]= guess;
} }
} }
} }
...@@ -240,58 +252,63 @@ static void guess_dc(MpegEncContext *s, int16_t *dc, int w, int h, int stride, i ...@@ -240,58 +252,63 @@ static void guess_dc(MpegEncContext *s, int16_t *dc, int w, int h, int stride, i
* @param w width in 8 pixel blocks * @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks * @param h height in 8 pixel blocks
*/ */
static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma){ static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w,
int h, int stride, int is_luma)
{
int b_x, b_y, mvx_stride, mvy_stride; int b_x, b_y, mvx_stride, mvy_stride;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
set_mv_strides(s, &mvx_stride, &mvy_stride); set_mv_strides(s, &mvx_stride, &mvy_stride);
mvx_stride >>= is_luma; mvx_stride >>= is_luma;
mvy_stride *= mvx_stride; mvy_stride *= mvx_stride;
for(b_y=0; b_y<h; b_y++){ for (b_y = 0; b_y < h; b_y++) {
for(b_x=0; b_x<w-1; b_x++){ for (b_x = 0; b_x < w - 1; b_x++) {
int y; int y;
int left_status = s->error_status_table[( b_x >>is_luma) + (b_y>>is_luma)*s->mb_stride]; int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int right_status= s->error_status_table[((b_x+1)>>is_luma) + (b_y>>is_luma)*s->mb_stride]; int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int left_intra = IS_INTRA(s->current_picture.f.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]); int left_intra = IS_INTRA(s->current_picture.f.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
int right_intra = IS_INTRA(s->current_picture.f.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]); int right_intra = IS_INTRA(s->current_picture.f.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
int left_damage = left_status&ER_MB_ERROR; int left_damage = left_status & ER_MB_ERROR;
int right_damage= right_status&ER_MB_ERROR; int right_damage = right_status & ER_MB_ERROR;
int offset= b_x*8 + b_y*stride*8; int offset = b_x * 8 + b_y * stride * 8;
int16_t *left_mv= s->current_picture.f.motion_val[0][mvy_stride*b_y + mvx_stride* b_x ]; int16_t *left_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
int16_t *right_mv= s->current_picture.f.motion_val[0][mvy_stride*b_y + mvx_stride*(b_x+1)]; int16_t *right_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
if (!(left_damage || right_damage))
if(!(left_damage||right_damage)) continue; // both undamaged continue; // both undamaged
if ((!left_intra) && (!right_intra) &&
if( (!left_intra) && (!right_intra) FFABS(left_mv[0] - right_mv[0]) +
&& FFABS(left_mv[0]-right_mv[0]) + FFABS(left_mv[1]+right_mv[1]) < 2) continue; FFABS(left_mv[1] + right_mv[1]) < 2)
continue;
for(y=0; y<8; y++){
int a,b,c,d; for (y = 0; y < 8; y++) {
int a, b, c, d;
a= dst[offset + 7 + y*stride] - dst[offset + 6 + y*stride];
b= dst[offset + 8 + y*stride] - dst[offset + 7 + y*stride]; a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride];
c= dst[offset + 9 + y*stride] - dst[offset + 8 + y*stride]; b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride];
c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride];
d= FFABS(b) - ((FFABS(a) + FFABS(c) + 1)>>1);
d= FFMAX(d, 0); d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
if(b<0) d= -d; d = FFMAX(d, 0);
if (b < 0)
if(d==0) continue; d = -d;
if(!(left_damage && right_damage)) if (d == 0)
d= d*16/9; continue;
if(left_damage){ if (!(left_damage && right_damage))
dst[offset + 7 + y*stride] = cm[dst[offset + 7 + y*stride] + ((d*7)>>4)]; d = d * 16 / 9;
dst[offset + 6 + y*stride] = cm[dst[offset + 6 + y*stride] + ((d*5)>>4)];
dst[offset + 5 + y*stride] = cm[dst[offset + 5 + y*stride] + ((d*3)>>4)]; if (left_damage) {
dst[offset + 4 + y*stride] = cm[dst[offset + 4 + y*stride] + ((d*1)>>4)]; dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)];
dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)];
dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)];
dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)];
} }
if(right_damage){ if (right_damage) {
dst[offset + 8 + y*stride] = cm[dst[offset + 8 + y*stride] - ((d*7)>>4)]; dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)];
dst[offset + 9 + y*stride] = cm[dst[offset + 9 + y*stride] - ((d*5)>>4)]; dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)];
dst[offset + 10+ y*stride] = cm[dst[offset +10 + y*stride] - ((d*3)>>4)]; dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)];
dst[offset + 11+ y*stride] = cm[dst[offset +11 + y*stride] - ((d*1)>>4)]; dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)];
} }
} }
} }
...@@ -303,231 +320,271 @@ static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int st ...@@ -303,231 +320,271 @@ static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int st
* @param w width in 8 pixel blocks * @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks * @param h height in 8 pixel blocks
*/ */
static void v_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma){ static void v_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h,
int stride, int is_luma)
{
int b_x, b_y, mvx_stride, mvy_stride; int b_x, b_y, mvx_stride, mvy_stride;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
set_mv_strides(s, &mvx_stride, &mvy_stride); set_mv_strides(s, &mvx_stride, &mvy_stride);
mvx_stride >>= is_luma; mvx_stride >>= is_luma;
mvy_stride *= mvx_stride; mvy_stride *= mvx_stride;
for(b_y=0; b_y<h-1; b_y++){ for (b_y = 0; b_y < h - 1; b_y++) {
for(b_x=0; b_x<w; b_x++){ for (b_x = 0; b_x < w; b_x++) {
int x; int x;
int top_status = s->error_status_table[(b_x>>is_luma) + ( b_y >>is_luma)*s->mb_stride]; int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int bottom_status= s->error_status_table[(b_x>>is_luma) + ((b_y+1)>>is_luma)*s->mb_stride]; int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride];
int top_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]); int top_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]);
int bottom_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]); int bottom_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]);
int top_damage = top_status&ER_MB_ERROR; int top_damage = top_status & ER_MB_ERROR;
int bottom_damage= bottom_status&ER_MB_ERROR; int bottom_damage = bottom_status & ER_MB_ERROR;
int offset= b_x*8 + b_y*stride*8; int offset = b_x * 8 + b_y * stride * 8;
int16_t *top_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * b_x]; int16_t *top_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
int16_t *bottom_mv = s->current_picture.f.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x]; int16_t *bottom_mv = s->current_picture.f.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
if(!(top_damage||bottom_damage)) continue; // both undamaged if (!(top_damage || bottom_damage))
continue; // both undamaged
if( (!top_intra) && (!bottom_intra) if ((!top_intra) && (!bottom_intra) &&
&& FFABS(top_mv[0]-bottom_mv[0]) + FFABS(top_mv[1]+bottom_mv[1]) < 2) continue; FFABS(top_mv[0] - bottom_mv[0]) +
FFABS(top_mv[1] + bottom_mv[1]) < 2)
continue;
for(x=0; x<8; x++){ for (x = 0; x < 8; x++) {
int a,b,c,d; int a, b, c, d;
a= dst[offset + x + 7*stride] - dst[offset + x + 6*stride]; a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride];
b= dst[offset + x + 8*stride] - dst[offset + x + 7*stride]; b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride];
c= dst[offset + x + 9*stride] - dst[offset + x + 8*stride]; c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride];
d= FFABS(b) - ((FFABS(a) + FFABS(c)+1)>>1); d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
d= FFMAX(d, 0); d = FFMAX(d, 0);
if(b<0) d= -d; if (b < 0)
d = -d;
if(d==0) continue; if (d == 0)
continue;
if(!(top_damage && bottom_damage)) if (!(top_damage && bottom_damage))
d= d*16/9; d = d * 16 / 9;
if(top_damage){ if (top_damage) {
dst[offset + x + 7*stride] = cm[dst[offset + x + 7*stride] + ((d*7)>>4)]; dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)];
dst[offset + x + 6*stride] = cm[dst[offset + x + 6*stride] + ((d*5)>>4)]; dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)];
dst[offset + x + 5*stride] = cm[dst[offset + x + 5*stride] + ((d*3)>>4)]; dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)];
dst[offset + x + 4*stride] = cm[dst[offset + x + 4*stride] + ((d*1)>>4)]; dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)];
} }
if(bottom_damage){ if (bottom_damage) {
dst[offset + x + 8*stride] = cm[dst[offset + x + 8*stride] - ((d*7)>>4)]; dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)];
dst[offset + x + 9*stride] = cm[dst[offset + x + 9*stride] - ((d*5)>>4)]; dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)];
dst[offset + x + 10*stride] = cm[dst[offset + x + 10*stride] - ((d*3)>>4)]; dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)];
dst[offset + x + 11*stride] = cm[dst[offset + x + 11*stride] - ((d*1)>>4)]; dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)];
} }
} }
} }
} }
} }
static void guess_mv(MpegEncContext *s){ static void guess_mv(MpegEncContext *s)
{
uint8_t fixed[s->mb_stride * s->mb_height]; uint8_t fixed[s->mb_stride * s->mb_height];
#define MV_FROZEN 3 #define MV_FROZEN 3
#define MV_CHANGED 2 #define MV_CHANGED 2
#define MV_UNCHANGED 1 #define MV_UNCHANGED 1
const int mb_stride = s->mb_stride; const int mb_stride = s->mb_stride;
const int mb_width = s->mb_width; const int mb_width = s->mb_width;
const int mb_height= s->mb_height; const int mb_height = s->mb_height;
int i, depth, num_avail; int i, depth, num_avail;
int mb_x, mb_y, mot_step, mot_stride; int mb_x, mb_y, mot_step, mot_stride;
set_mv_strides(s, &mot_step, &mot_stride); set_mv_strides(s, &mot_step, &mot_stride);
num_avail=0; num_avail = 0;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[ i ]; const int mb_xy = s->mb_index2xy[i];
int f=0; int f = 0;
int error= s->error_status_table[mb_xy]; int error = s->error_status_table[mb_xy];
if(IS_INTRA(s->current_picture.f.mb_type[mb_xy])) f=MV_FROZEN; //intra //FIXME check if (IS_INTRA(s->current_picture.f.mb_type[mb_xy]))
if(!(error&ER_MV_ERROR)) f=MV_FROZEN; //inter with undamaged MV f = MV_FROZEN; // intra // FIXME check
if (!(error & ER_MV_ERROR))
f = MV_FROZEN; // inter with undamaged MV
fixed[mb_xy]= f; fixed[mb_xy] = f;
if(f==MV_FROZEN) if (f == MV_FROZEN)
num_avail++; num_avail++;
} }
if((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) || num_avail <= mb_width/2){ if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) ||
for(mb_y=0; mb_y<s->mb_height; mb_y++){ num_avail <= mb_width / 2) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
const int mb_xy= mb_x + mb_y*s->mb_stride; for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy = mb_x + mb_y * s->mb_stride;
if(IS_INTRA(s->current_picture.f.mb_type[mb_xy])) continue; if (IS_INTRA(s->current_picture.f.mb_type[mb_xy]))
if(!(s->error_status_table[mb_xy]&ER_MV_ERROR)) continue; continue;
if (!(s->error_status_table[mb_xy] & ER_MV_ERROR))
continue;
s->mv_dir = s->last_picture.f.data[0] ? MV_DIR_FORWARD : MV_DIR_BACKWARD; s->mv_dir = s->last_picture.f.data[0] ? MV_DIR_FORWARD
s->mb_intra=0; : MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_16X16; s->mb_intra = 0;
s->mb_skipped=0; s->mv_type = MV_TYPE_16X16;
s->mb_skipped = 0;
s->dsp.clear_blocks(s->block[0]); s->dsp.clear_blocks(s->block[0]);
s->mb_x= mb_x; s->mb_x = mb_x;
s->mb_y= mb_y; s->mb_y = mb_y;
s->mv[0][0][0]= 0; s->mv[0][0][0] = 0;
s->mv[0][0][1]= 0; s->mv[0][0][1] = 0;
decode_mb(s, 0); decode_mb(s, 0);
} }
} }
return; return;
} }
for(depth=0;; depth++){ for (depth = 0; ; depth++) {
int changed, pass, none_left; int changed, pass, none_left;
none_left=1; none_left = 1;
changed=1; changed = 1;
for(pass=0; (changed || pass<2) && pass<10; pass++){ for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
int mb_x, mb_y; int mb_x, mb_y;
int score_sum=0; int score_sum = 0;
changed=0; changed = 0;
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
int mv_predictor[8][2]={{0}}; int mv_predictor[8][2] = { { 0 } };
int ref[8]={0}; int ref[8] = { 0 };
int pred_count=0; int pred_count = 0;
int j; int j;
int best_score=256*256*256*64; int best_score = 256 * 256 * 256 * 64;
int best_pred=0; int best_pred = 0;
const int mot_index= (mb_x + mb_y*mot_stride) * mot_step; const int mot_index = (mb_x + mb_y * mot_stride) * mot_step;
int prev_x, prev_y, prev_ref; int prev_x, prev_y, prev_ref;
if((mb_x^mb_y^pass)&1) continue; if ((mb_x ^ mb_y ^ pass) & 1)
continue;
if(fixed[mb_xy]==MV_FROZEN) continue; if (fixed[mb_xy] == MV_FROZEN)
continue;
assert(!IS_INTRA(s->current_picture.f.mb_type[mb_xy])); assert(!IS_INTRA(s->current_picture.f.mb_type[mb_xy]));
assert(s->last_picture_ptr && s->last_picture_ptr->f.data[0]); assert(s->last_picture_ptr && s->last_picture_ptr->f.data[0]);
j=0; j = 0;
if(mb_x>0 && fixed[mb_xy-1 ]==MV_FROZEN) j=1; if (mb_x > 0 && fixed[mb_xy - 1] == MV_FROZEN)
if(mb_x+1<mb_width && fixed[mb_xy+1 ]==MV_FROZEN) j=1; j = 1;
if(mb_y>0 && fixed[mb_xy-mb_stride]==MV_FROZEN) j=1; if (mb_x + 1 < mb_width && fixed[mb_xy + 1] == MV_FROZEN)
if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_FROZEN) j=1; j = 1;
if(j==0) continue; if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_FROZEN)
j = 1;
j=0; if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_FROZEN)
if(mb_x>0 && fixed[mb_xy-1 ]==MV_CHANGED) j=1; j = 1;
if(mb_x+1<mb_width && fixed[mb_xy+1 ]==MV_CHANGED) j=1; if (j == 0)
if(mb_y>0 && fixed[mb_xy-mb_stride]==MV_CHANGED) j=1; continue;
if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_CHANGED) j=1;
if(j==0 && pass>1) continue; j = 0;
if (mb_x > 0 && fixed[mb_xy - 1 ] == MV_CHANGED)
none_left=0; j = 1;
if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] == MV_CHANGED)
if(mb_x>0 && fixed[mb_xy-1]){ j = 1;
mv_predictor[pred_count][0]= s->current_picture.f.motion_val[0][mot_index - mot_step][0]; if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_CHANGED)
mv_predictor[pred_count][1]= s->current_picture.f.motion_val[0][mot_index - mot_step][1]; j = 1;
ref [pred_count] = s->current_picture.f.ref_index[0][4*(mb_xy-1)]; if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_CHANGED)
j = 1;
if (j == 0 && pass > 1)
continue;
none_left = 0;
if (mb_x > 0 && fixed[mb_xy - 1]) {
mv_predictor[pred_count][0] =
s->current_picture.f.motion_val[0][mot_index - mot_step][0];
mv_predictor[pred_count][1] =
s->current_picture.f.motion_val[0][mot_index - mot_step][1];
ref[pred_count] =
s->current_picture.f.ref_index[0][4 * (mb_xy - 1)];
pred_count++; pred_count++;
} }
if(mb_x+1<mb_width && fixed[mb_xy+1]){ if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
mv_predictor[pred_count][0]= s->current_picture.f.motion_val[0][mot_index + mot_step][0]; mv_predictor[pred_count][0] =
mv_predictor[pred_count][1]= s->current_picture.f.motion_val[0][mot_index + mot_step][1]; s->current_picture.f.motion_val[0][mot_index + mot_step][0];
ref [pred_count] = s->current_picture.f.ref_index[0][4*(mb_xy+1)]; mv_predictor[pred_count][1] =
s->current_picture.f.motion_val[0][mot_index + mot_step][1];
ref[pred_count] =
s->current_picture.f.ref_index[0][4 * (mb_xy + 1)];
pred_count++; pred_count++;
} }
if(mb_y>0 && fixed[mb_xy-mb_stride]){ if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
mv_predictor[pred_count][0]= s->current_picture.f.motion_val[0][mot_index - mot_stride*mot_step][0]; mv_predictor[pred_count][0] =
mv_predictor[pred_count][1]= s->current_picture.f.motion_val[0][mot_index - mot_stride*mot_step][1]; s->current_picture.f.motion_val[0][mot_index - mot_stride * mot_step][0];
ref [pred_count] = s->current_picture.f.ref_index[0][4*(mb_xy-s->mb_stride)]; mv_predictor[pred_count][1] =
s->current_picture.f.motion_val[0][mot_index - mot_stride * mot_step][1];
ref[pred_count] =
s->current_picture.f.ref_index[0][4 * (mb_xy - s->mb_stride)];
pred_count++; pred_count++;
} }
if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){ if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
mv_predictor[pred_count][0]= s->current_picture.f.motion_val[0][mot_index + mot_stride*mot_step][0]; mv_predictor[pred_count][0] =
mv_predictor[pred_count][1]= s->current_picture.f.motion_val[0][mot_index + mot_stride*mot_step][1]; s->current_picture.f.motion_val[0][mot_index + mot_stride * mot_step][0];
ref [pred_count] = s->current_picture.f.ref_index[0][4*(mb_xy+s->mb_stride)]; mv_predictor[pred_count][1] =
s->current_picture.f.motion_val[0][mot_index + mot_stride * mot_step][1];
ref[pred_count] =
s->current_picture.f.ref_index[0][4 * (mb_xy + s->mb_stride)];
pred_count++; pred_count++;
} }
if(pred_count==0) continue; if (pred_count == 0)
continue;
if(pred_count>1){ if (pred_count > 1) {
int sum_x=0, sum_y=0, sum_r=0; int sum_x = 0, sum_y = 0, sum_r = 0;
int max_x, max_y, min_x, min_y, max_r, min_r; int max_x, max_y, min_x, min_y, max_r, min_r;
for(j=0; j<pred_count; j++){ for (j = 0; j < pred_count; j++) {
sum_x+= mv_predictor[j][0]; sum_x += mv_predictor[j][0];
sum_y+= mv_predictor[j][1]; sum_y += mv_predictor[j][1];
sum_r+= ref[j]; sum_r += ref[j];
if(j && ref[j] != ref[j-1]) if (j && ref[j] != ref[j - 1])
goto skip_mean_and_median; goto skip_mean_and_median;
} }
/* mean */ /* mean */
mv_predictor[pred_count][0] = sum_x/j; mv_predictor[pred_count][0] = sum_x / j;
mv_predictor[pred_count][1] = sum_y/j; mv_predictor[pred_count][1] = sum_y / j;
ref [pred_count] = sum_r/j; ref[pred_count] = sum_r / j;
/* median */ /* median */
if(pred_count>=3){ if (pred_count >= 3) {
min_y= min_x= min_r= 99999; min_y = min_x = min_r = 99999;
max_y= max_x= max_r=-99999; max_y = max_x = max_r = -99999;
}else{ } else {
min_x=min_y=max_x=max_y=min_r=max_r=0; min_x = min_y = max_x = max_y = min_r = max_r = 0;
} }
for(j=0; j<pred_count; j++){ for (j = 0; j < pred_count; j++) {
max_x= FFMAX(max_x, mv_predictor[j][0]); max_x = FFMAX(max_x, mv_predictor[j][0]);
max_y= FFMAX(max_y, mv_predictor[j][1]); max_y = FFMAX(max_y, mv_predictor[j][1]);
max_r= FFMAX(max_r, ref[j]); max_r = FFMAX(max_r, ref[j]);
min_x= FFMIN(min_x, mv_predictor[j][0]); min_x = FFMIN(min_x, mv_predictor[j][0]);
min_y= FFMIN(min_y, mv_predictor[j][1]); min_y = FFMIN(min_y, mv_predictor[j][1]);
min_r= FFMIN(min_r, ref[j]); min_r = FFMIN(min_r, ref[j]);
} }
mv_predictor[pred_count+1][0] = sum_x - max_x - min_x; mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
mv_predictor[pred_count+1][1] = sum_y - max_y - min_y; mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
ref [pred_count+1] = sum_r - max_r - min_r; ref[pred_count + 1] = sum_r - max_r - min_r;
if(pred_count==4){ if (pred_count == 4) {
mv_predictor[pred_count+1][0] /= 2; mv_predictor[pred_count + 1][0] /= 2;
mv_predictor[pred_count+1][1] /= 2; mv_predictor[pred_count + 1][1] /= 2;
ref [pred_count+1] /= 2; ref[pred_count + 1] /= 2;
} }
pred_count+=2; pred_count += 2;
} }
skip_mean_and_median:
skip_mean_and_median:
/* zero MV */ /* zero MV */
pred_count++; pred_count++;
...@@ -541,76 +598,83 @@ skip_mean_and_median: ...@@ -541,76 +598,83 @@ skip_mean_and_median:
if (!s->last_picture.f.motion_val[0] || if (!s->last_picture.f.motion_val[0] ||
!s->last_picture.f.ref_index[0]) !s->last_picture.f.ref_index[0])
goto skip_last_mv; goto skip_last_mv;
prev_x = s->last_picture.f.motion_val[0][mot_index][0]; prev_x = s->last_picture.f.motion_val[0][mot_index][0];
prev_y = s->last_picture.f.motion_val[0][mot_index][1]; prev_y = s->last_picture.f.motion_val[0][mot_index][1];
prev_ref = s->last_picture.f.ref_index[0][4*mb_xy]; prev_ref = s->last_picture.f.ref_index[0][4 * mb_xy];
} else { } else {
prev_x = s->current_picture.f.motion_val[0][mot_index][0]; prev_x = s->current_picture.f.motion_val[0][mot_index][0];
prev_y = s->current_picture.f.motion_val[0][mot_index][1]; prev_y = s->current_picture.f.motion_val[0][mot_index][1];
prev_ref = s->current_picture.f.ref_index[0][4*mb_xy]; prev_ref = s->current_picture.f.ref_index[0][4 * mb_xy];
} }
/* last MV */ /* last MV */
mv_predictor[pred_count][0]= prev_x; mv_predictor[pred_count][0] = prev_x;
mv_predictor[pred_count][1]= prev_y; mv_predictor[pred_count][1] = prev_y;
ref [pred_count] = prev_ref; ref[pred_count] = prev_ref;
pred_count++; pred_count++;
skip_last_mv:
s->mv_dir = MV_DIR_FORWARD; skip_last_mv:
s->mb_intra=0; s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_16X16; s->mb_intra = 0;
s->mb_skipped=0; s->mv_type = MV_TYPE_16X16;
s->mb_skipped = 0;
s->dsp.clear_blocks(s->block[0]); s->dsp.clear_blocks(s->block[0]);
s->mb_x= mb_x; s->mb_x = mb_x;
s->mb_y= mb_y; s->mb_y = mb_y;
for(j=0; j<pred_count; j++){ for (j = 0; j < pred_count; j++) {
int score=0; int score = 0;
uint8_t *src = s->current_picture.f.data[0] + mb_x*16 + mb_y*16*s->linesize; uint8_t *src = s->current_picture.f.data[0] +
mb_x * 16 + mb_y * 16 * s->linesize;
s->current_picture.f.motion_val[0][mot_index][0] = s->mv[0][0][0] = mv_predictor[j][0]; s->current_picture.f.motion_val[0][mot_index][0] =
s->current_picture.f.motion_val[0][mot_index][1] = s->mv[0][0][1] = mv_predictor[j][1]; s->mv[0][0][0] = mv_predictor[j][0];
s->current_picture.f.motion_val[0][mot_index][1] =
s->mv[0][0][1] = mv_predictor[j][1];
if(ref[j]<0) //predictor intra or otherwise not available // predictor intra or otherwise not available
if (ref[j] < 0)
continue; continue;
decode_mb(s, ref[j]); decode_mb(s, ref[j]);
if(mb_x>0 && fixed[mb_xy-1]){ if (mb_x > 0 && fixed[mb_xy - 1]) {
int k; int k;
for(k=0; k<16; k++) for (k = 0; k < 16; k++)
score += FFABS(src[k*s->linesize-1 ]-src[k*s->linesize ]); score += FFABS(src[k * s->linesize - 1] -
src[k * s->linesize]);
} }
if(mb_x+1<mb_width && fixed[mb_xy+1]){ if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
int k; int k;
for(k=0; k<16; k++) for (k = 0; k < 16; k++)
score += FFABS(src[k*s->linesize+15]-src[k*s->linesize+16]); score += FFABS(src[k * s->linesize + 15] -
src[k * s->linesize + 16]);
} }
if(mb_y>0 && fixed[mb_xy-mb_stride]){ if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
int k; int k;
for(k=0; k<16; k++) for (k = 0; k < 16; k++)
score += FFABS(src[k-s->linesize ]-src[k ]); score += FFABS(src[k - s->linesize] - src[k]);
} }
if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){ if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
int k; int k;
for(k=0; k<16; k++) for (k = 0; k < 16; k++)
score += FFABS(src[k+s->linesize*15]-src[k+s->linesize*16]); score += FFABS(src[k + s->linesize * 15] -
src[k + s->linesize * 16]);
} }
if(score <= best_score){ // <= will favor the last MV if (score <= best_score) { // <= will favor the last MV
best_score= score; best_score = score;
best_pred= j; best_pred = j;
} }
} }
score_sum+= best_score; score_sum += best_score;
s->mv[0][0][0]= mv_predictor[best_pred][0]; s->mv[0][0][0] = mv_predictor[best_pred][0];
s->mv[0][0][1]= mv_predictor[best_pred][1]; s->mv[0][0][1] = mv_predictor[best_pred][1];
for(i=0; i<mot_step; i++) for (i = 0; i < mot_step; i++)
for(j=0; j<mot_step; j++){ for (j = 0; j < mot_step; j++) {
s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0]; s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0];
s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1]; s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1];
} }
...@@ -618,73 +682,83 @@ score_sum+= best_score; ...@@ -618,73 +682,83 @@ score_sum+= best_score;
decode_mb(s, ref[best_pred]); decode_mb(s, ref[best_pred]);
if(s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y){ if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) {
fixed[mb_xy]=MV_CHANGED; fixed[mb_xy] = MV_CHANGED;
changed++; changed++;
}else } else
fixed[mb_xy]=MV_UNCHANGED; fixed[mb_xy] = MV_UNCHANGED;
} }
} }
// printf(".%d/%d", changed, score_sum); fflush(stdout); // printf(".%d/%d", changed, score_sum); fflush(stdout);
} }
if(none_left) if (none_left)
return; return;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
int mb_xy= s->mb_index2xy[i]; int mb_xy = s->mb_index2xy[i];
if(fixed[mb_xy]) if (fixed[mb_xy])
fixed[mb_xy]=MV_FROZEN; fixed[mb_xy] = MV_FROZEN;
} }
// printf(":"); fflush(stdout); // printf(":"); fflush(stdout);
} }
} }
static int is_intra_more_likely(MpegEncContext *s){ static int is_intra_more_likely(MpegEncContext *s)
{
int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y; int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
if (!s->last_picture_ptr || !s->last_picture_ptr->f.data[0]) return 1; //no previous frame available -> use spatial prediction if (!s->last_picture_ptr || !s->last_picture_ptr->f.data[0])
return 1; // no previous frame available -> use spatial prediction
undamaged_count=0; undamaged_count = 0;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
const int error= s->error_status_table[mb_xy]; const int error = s->error_status_table[mb_xy];
if(!((error&ER_DC_ERROR) && (error&ER_MV_ERROR))) if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
undamaged_count++; undamaged_count++;
} }
if(s->codec_id == CODEC_ID_H264){ if (s->codec_id == CODEC_ID_H264) {
H264Context *h= (void*)s; H264Context *h = (void*) s;
if (h->list_count <= 0 || h->ref_count[0] <= 0 || !h->ref_list[0][0].f.data[0]) if (h->list_count <= 0 || h->ref_count[0] <= 0 ||
!h->ref_list[0][0].f.data[0])
return 1; return 1;
} }
if(undamaged_count < 5) return 0; //almost all MBs damaged -> use temporal prediction if (undamaged_count < 5)
return 0; // almost all MBs damaged -> use temporal prediction
//prevent dsp.sad() check, that requires access to the image // prevent dsp.sad() check, that requires access to the image
if(CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration && s->pict_type == AV_PICTURE_TYPE_I) if (CONFIG_MPEG_XVMC_DECODER &&
s->avctx->xvmc_acceleration &&
s->pict_type == AV_PICTURE_TYPE_I)
return 1; return 1;
skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs
is_intra_likely=0; is_intra_likely = 0;
j=0; j = 0;
for(mb_y= 0; mb_y<s->mb_height-1; mb_y++){ for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) {
for(mb_x= 0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int error; int error;
const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if((error&ER_DC_ERROR) && (error&ER_MV_ERROR)) if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR))
continue; //skip damaged continue; // skip damaged
j++; j++;
if((j%skip_amount) != 0) continue; //skip a few to speed things up // skip a few to speed things up
if ((j % skip_amount) != 0)
continue;
if(s->pict_type==AV_PICTURE_TYPE_I){ if (s->pict_type == AV_PICTURE_TYPE_I) {
uint8_t *mb_ptr = s->current_picture.f.data[0] + mb_x*16 + mb_y*16*s->linesize; uint8_t *mb_ptr = s->current_picture.f.data[0] +
uint8_t *last_mb_ptr= s->last_picture.f.data [0] + mb_x*16 + mb_y*16*s->linesize; mb_x * 16 + mb_y * 16 * s->linesize;
uint8_t *last_mb_ptr = s->last_picture.f.data[0] +
mb_x * 16 + mb_y * 16 * s->linesize;
if (s->avctx->codec_id == CODEC_ID_H264) { if (s->avctx->codec_id == CODEC_ID_H264) {
// FIXME // FIXME
...@@ -692,9 +766,12 @@ static int is_intra_more_likely(MpegEncContext *s){ ...@@ -692,9 +766,12 @@ static int is_intra_more_likely(MpegEncContext *s){
ff_thread_await_progress((AVFrame *) s->last_picture_ptr, ff_thread_await_progress((AVFrame *) s->last_picture_ptr,
mb_y, 0); mb_y, 0);
} }
is_intra_likely += s->dsp.sad[0](NULL, last_mb_ptr, mb_ptr , s->linesize, 16); is_intra_likely += s->dsp.sad[0](NULL, last_mb_ptr, mb_ptr,
is_intra_likely -= s->dsp.sad[0](NULL, last_mb_ptr, last_mb_ptr+s->linesize*16, s->linesize, 16); s->linesize, 16);
}else{ is_intra_likely -= s->dsp.sad[0](NULL, last_mb_ptr,
last_mb_ptr + s->linesize * 16,
s->linesize, 16);
} else {
if (IS_INTRA(s->current_picture.f.mb_type[mb_xy])) if (IS_INTRA(s->current_picture.f.mb_type[mb_xy]))
is_intra_likely++; is_intra_likely++;
else else
...@@ -702,117 +779,133 @@ static int is_intra_more_likely(MpegEncContext *s){ ...@@ -702,117 +779,133 @@ static int is_intra_more_likely(MpegEncContext *s){
} }
} }
} }
//printf("is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type); // printf("is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
return is_intra_likely > 0; return is_intra_likely > 0;
} }
void ff_er_frame_start(MpegEncContext *s){ void ff_er_frame_start(MpegEncContext *s)
if(!s->err_recognition) return; {
if (!s->err_recognition)
return;
memset(s->error_status_table, ER_MB_ERROR|VP_START|ER_MB_END, s->mb_stride*s->mb_height*sizeof(uint8_t)); memset(s->error_status_table, ER_MB_ERROR | VP_START | ER_MB_END,
s->error_count= 3*s->mb_num; s->mb_stride * s->mb_height * sizeof(uint8_t));
s->error_count = 3 * s->mb_num;
s->error_occurred = 0; s->error_occurred = 0;
} }
/** /**
* Add a slice. * Add a slice.
* @param endx x component of the last macroblock, can be -1 for the last of the previous line * @param endx x component of the last macroblock, can be -1
* @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is assumed that no earlier end or * for the last of the previous line
* error of the same type occurred * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
* assumed that no earlier end or error of the same type occurred
*/ */
void ff_er_add_slice(MpegEncContext *s, int startx, int starty, int endx, int endy, int status){ void ff_er_add_slice(MpegEncContext *s, int startx, int starty,
const int start_i= av_clip(startx + starty * s->mb_width , 0, s->mb_num-1); int endx, int endy, int status)
const int end_i = av_clip(endx + endy * s->mb_width , 0, s->mb_num); {
const int start_xy= s->mb_index2xy[start_i]; const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1);
const int end_xy = s->mb_index2xy[end_i]; const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num);
int mask= -1; const int start_xy = s->mb_index2xy[start_i];
const int end_xy = s->mb_index2xy[end_i];
if(s->avctx->hwaccel) int mask = -1;
if (s->avctx->hwaccel)
return; return;
if(start_i > end_i || start_xy > end_xy){ if (start_i > end_i || start_xy > end_xy) {
av_log(s->avctx, AV_LOG_ERROR, "internal error, slice end before start\n"); av_log(s->avctx, AV_LOG_ERROR,
"internal error, slice end before start\n");
return; return;
} }
if(!s->err_recognition) return; if (!s->err_recognition)
return;
mask &= ~VP_START; mask &= ~VP_START;
if(status & (ER_AC_ERROR|ER_AC_END)){ if (status & (ER_AC_ERROR | ER_AC_END)) {
mask &= ~(ER_AC_ERROR|ER_AC_END); mask &= ~(ER_AC_ERROR | ER_AC_END);
s->error_count -= end_i - start_i + 1; s->error_count -= end_i - start_i + 1;
} }
if(status & (ER_DC_ERROR|ER_DC_END)){ if (status & (ER_DC_ERROR | ER_DC_END)) {
mask &= ~(ER_DC_ERROR|ER_DC_END); mask &= ~(ER_DC_ERROR | ER_DC_END);
s->error_count -= end_i - start_i + 1; s->error_count -= end_i - start_i + 1;
} }
if(status & (ER_MV_ERROR|ER_MV_END)){ if (status & (ER_MV_ERROR | ER_MV_END)) {
mask &= ~(ER_MV_ERROR|ER_MV_END); mask &= ~(ER_MV_ERROR | ER_MV_END);
s->error_count -= end_i - start_i + 1; s->error_count -= end_i - start_i + 1;
} }
if(status & ER_MB_ERROR) { if (status & ER_MB_ERROR) {
s->error_occurred = 1; s->error_occurred = 1;
s->error_count= INT_MAX; s->error_count = INT_MAX;
} }
if(mask == ~0x7F){ if (mask == ~0x7F) {
memset(&s->error_status_table[start_xy], 0, (end_xy - start_xy) * sizeof(uint8_t)); memset(&s->error_status_table[start_xy], 0,
}else{ (end_xy - start_xy) * sizeof(uint8_t));
} else {
int i; int i;
for(i=start_xy; i<end_xy; i++){ for (i = start_xy; i < end_xy; i++)
s->error_status_table[ i ] &= mask; s->error_status_table[i] &= mask;
}
} }
if(end_i == s->mb_num) if (end_i == s->mb_num)
s->error_count= INT_MAX; s->error_count = INT_MAX;
else{ else {
s->error_status_table[end_xy] &= mask; s->error_status_table[end_xy] &= mask;
s->error_status_table[end_xy] |= status; s->error_status_table[end_xy] |= status;
} }
s->error_status_table[start_xy] |= VP_START; s->error_status_table[start_xy] |= VP_START;
if(start_xy > 0 && s->avctx->thread_count <= 1 && s->avctx->skip_top*s->mb_width < start_i){ if (start_xy > 0 && s->avctx->thread_count <= 1 &&
int prev_status= s->error_status_table[ s->mb_index2xy[start_i - 1] ]; s->avctx->skip_top * s->mb_width < start_i) {
int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]];
prev_status &= ~ VP_START; prev_status &= ~ VP_START;
if(prev_status != (ER_MV_END|ER_DC_END|ER_AC_END)) s->error_count= INT_MAX; if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
s->error_count = INT_MAX;
} }
} }
void ff_er_frame_end(MpegEncContext *s){ void ff_er_frame_end(MpegEncContext *s)
{
int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error; int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
int distance; int distance;
int threshold_part[4]= {100,100,100}; int threshold_part[4] = { 100, 100, 100 };
int threshold= 50; int threshold = 50;
int is_intra_likely; int is_intra_likely;
int size = s->b8_stride * 2 * s->mb_height; int size = s->b8_stride * 2 * s->mb_height;
Picture *pic= s->current_picture_ptr; Picture *pic = s->current_picture_ptr;
if(!s->err_recognition || s->error_count==0 || s->avctx->lowres || /* We do not support ER of field pictures yet,
s->avctx->hwaccel || * though it should not crash if enabled. */
s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU || if (!s->err_recognition || s->error_count == 0 || s->avctx->lowres ||
s->picture_structure != PICT_FRAME || // we do not support ER of field pictures yet, though it should not crash if enabled s->avctx->hwaccel ||
s->error_count==3*s->mb_width*(s->avctx->skip_top + s->avctx->skip_bottom)) return; s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU ||
s->picture_structure != PICT_FRAME ||
s->error_count == 3 * s->mb_width *
(s->avctx->skip_top + s->avctx->skip_bottom)) {
return;
};
if (s->current_picture.f.motion_val[0] == NULL) { if (s->current_picture.f.motion_val[0] == NULL) {
av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n"); av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n");
for(i=0; i<2; i++){ for (i = 0; i < 2; i++) {
pic->f.ref_index[i] = av_mallocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t)); pic->f.ref_index[i] = av_mallocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t));
pic->motion_val_base[i]= av_mallocz((size+4) * 2 * sizeof(uint16_t)); pic->motion_val_base[i] = av_mallocz((size + 4) * 2 * sizeof(uint16_t));
pic->f.motion_val[i] = pic->motion_val_base[i] + 4; pic->f.motion_val[i] = pic->motion_val_base[i] + 4;
} }
pic->f.motion_subsample_log2 = 3; pic->f.motion_subsample_log2 = 3;
s->current_picture= *s->current_picture_ptr; s->current_picture = *s->current_picture_ptr;
} }
if(s->avctx->debug&FF_DEBUG_ER){ if (s->avctx->debug & FF_DEBUG_ER) {
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int status= s->error_status_table[mb_x + mb_y*s->mb_stride]; int status = s->error_status_table[mb_x + mb_y * s->mb_stride];
av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status); av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);
} }
...@@ -821,140 +914,149 @@ void ff_er_frame_end(MpegEncContext *s){ ...@@ -821,140 +914,149 @@ void ff_er_frame_end(MpegEncContext *s){
} }
/* handle overlapping slices */ /* handle overlapping slices */
for(error_type=1; error_type<=3; error_type++){ for (error_type = 1; error_type <= 3; error_type++) {
int end_ok=0; int end_ok = 0;
for(i=s->mb_num-1; i>=0; i--){ for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
int error= s->error_status_table[mb_xy]; int error = s->error_status_table[mb_xy];
if(error&(1<<error_type)) if (error & (1 << error_type))
end_ok=1; end_ok = 1;
if(error&(8<<error_type)) if (error & (8 << error_type))
end_ok=1; end_ok = 1;
if(!end_ok) if (!end_ok)
s->error_status_table[mb_xy]|= 1<<error_type; s->error_status_table[mb_xy] |= 1 << error_type;
if(error&VP_START) if (error & VP_START)
end_ok=0; end_ok = 0;
} }
} }
/* handle slices with partitions of different length */ /* handle slices with partitions of different length */
if(s->partitioned_frame){ if (s->partitioned_frame) {
int end_ok=0; int end_ok = 0;
for(i=s->mb_num-1; i>=0; i--){ for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
int error= s->error_status_table[mb_xy]; int error = s->error_status_table[mb_xy];
if(error&ER_AC_END) if (error & ER_AC_END)
end_ok=0; end_ok = 0;
if((error&ER_MV_END) || (error&ER_DC_END) || (error&ER_AC_ERROR)) if ((error & ER_MV_END) ||
end_ok=1; (error & ER_DC_END) ||
(error & ER_AC_ERROR))
end_ok = 1;
if(!end_ok) if (!end_ok)
s->error_status_table[mb_xy]|= ER_AC_ERROR; s->error_status_table[mb_xy]|= ER_AC_ERROR;
if(error&VP_START) if (error & VP_START)
end_ok=0; end_ok = 0;
} }
} }
/* handle missing slices */ /* handle missing slices */
if(s->err_recognition&AV_EF_EXPLODE){ if (s->err_recognition & AV_EF_EXPLODE) {
int end_ok=1; int end_ok = 1;
for(i=s->mb_num-2; i>=s->mb_width+100; i--){ //FIXME +100 hack // FIXME + 100 hack
const int mb_xy= s->mb_index2xy[i]; for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) {
int error1= s->error_status_table[mb_xy ]; const int mb_xy = s->mb_index2xy[i];
int error2= s->error_status_table[s->mb_index2xy[i+1]]; int error1 = s->error_status_table[mb_xy];
int error2 = s->error_status_table[s->mb_index2xy[i + 1]];
if(error1&VP_START)
end_ok=1; if (error1 & VP_START)
end_ok = 1;
if( error2==(VP_START|ER_MB_ERROR|ER_MB_END)
&& error1!=(VP_START|ER_MB_ERROR|ER_MB_END) if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) &&
&& ((error1&ER_AC_END) || (error1&ER_DC_END) || (error1&ER_MV_END))){ //end & uninit error1 != (VP_START | ER_MB_ERROR | ER_MB_END) &&
end_ok=0; ((error1 & ER_AC_END) || (error1 & ER_DC_END) ||
(error1 & ER_MV_END))) {
// end & uninit
end_ok = 0;
} }
if(!end_ok) if (!end_ok)
s->error_status_table[mb_xy]|= ER_MB_ERROR; s->error_status_table[mb_xy] |= ER_MB_ERROR;
} }
} }
/* backward mark errors */ /* backward mark errors */
distance=9999999; distance = 9999999;
for(error_type=1; error_type<=3; error_type++){ for (error_type = 1; error_type <= 3; error_type++) {
for(i=s->mb_num-1; i>=0; i--){ for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
int error= s->error_status_table[mb_xy]; int error = s->error_status_table[mb_xy];
if(!s->mbskip_table[mb_xy]) //FIXME partition specific if (!s->mbskip_table[mb_xy]) // FIXME partition specific
distance++; distance++;
if(error&(1<<error_type)) if (error & (1 << error_type))
distance= 0; distance = 0;
if(s->partitioned_frame){ if (s->partitioned_frame) {
if(distance < threshold_part[error_type-1]) if (distance < threshold_part[error_type - 1])
s->error_status_table[mb_xy]|= 1<<error_type; s->error_status_table[mb_xy] |= 1 << error_type;
}else{ } else {
if(distance < threshold) if (distance < threshold)
s->error_status_table[mb_xy]|= 1<<error_type; s->error_status_table[mb_xy] |= 1 << error_type;
} }
if(error&VP_START) if (error & VP_START)
distance= 9999999; distance = 9999999;
} }
} }
/* forward mark errors */ /* forward mark errors */
error=0; error = 0;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
int old_error= s->error_status_table[mb_xy]; int old_error = s->error_status_table[mb_xy];
if(old_error&VP_START) if (old_error & VP_START) {
error= old_error& ER_MB_ERROR; error = old_error & ER_MB_ERROR;
else{ } else {
error|= old_error& ER_MB_ERROR; error |= old_error & ER_MB_ERROR;
s->error_status_table[mb_xy]|= error; s->error_status_table[mb_xy] |= error;
} }
} }
/* handle not partitioned case */ /* handle not partitioned case */
if(!s->partitioned_frame){ if (!s->partitioned_frame) {
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if(error&ER_MB_ERROR) if (error & ER_MB_ERROR)
error|= ER_MB_ERROR; error |= ER_MB_ERROR;
s->error_status_table[mb_xy]= error; s->error_status_table[mb_xy] = error;
} }
} }
dc_error= ac_error= mv_error=0; dc_error = ac_error = mv_error = 0;
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if(error&ER_DC_ERROR) dc_error ++; if (error & ER_DC_ERROR)
if(error&ER_AC_ERROR) ac_error ++; dc_error++;
if(error&ER_MV_ERROR) mv_error ++; if (error & ER_AC_ERROR)
ac_error++;
if (error & ER_MV_ERROR)
mv_error++;
} }
av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors\n", dc_error, ac_error, mv_error); av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors\n",
dc_error, ac_error, mv_error);
is_intra_likely= is_intra_more_likely(s); is_intra_likely = is_intra_more_likely(s);
/* set unknown mb-type to most likely */ /* set unknown mb-type to most likely */
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if(!((error&ER_DC_ERROR) && (error&ER_MV_ERROR))) if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
continue; continue;
if(is_intra_likely) if (is_intra_likely)
s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4; s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
else else
s->current_picture.f.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0; s->current_picture.f.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0;
...@@ -962,164 +1064,177 @@ void ff_er_frame_end(MpegEncContext *s){ ...@@ -962,164 +1064,177 @@ void ff_er_frame_end(MpegEncContext *s){
// change inter to intra blocks if no reference frames are available // change inter to intra blocks if no reference frames are available
if (!s->last_picture.f.data[0] && !s->next_picture.f.data[0]) if (!s->last_picture.f.data[0] && !s->next_picture.f.data[0])
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
if (!IS_INTRA(s->current_picture.f.mb_type[mb_xy])) if (!IS_INTRA(s->current_picture.f.mb_type[mb_xy]))
s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4; s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
} }
/* handle inter blocks with damaged AC */ /* handle inter blocks with damaged AC */
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy= mb_x + mb_y * s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type= s->current_picture.f.mb_type[mb_xy]; const int mb_type = s->current_picture.f.mb_type[mb_xy];
int dir = !s->last_picture.f.data[0]; int dir = !s->last_picture.f.data[0];
error= s->error_status_table[mb_xy];
error = s->error_status_table[mb_xy];
if(IS_INTRA(mb_type)) continue; //intra
if(error&ER_MV_ERROR) continue; //inter with damaged MV if (IS_INTRA(mb_type))
if(!(error&ER_AC_ERROR)) continue; //undamaged inter continue; // intra
if (error & ER_MV_ERROR)
s->mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD; continue; // inter with damaged MV
s->mb_intra=0; if (!(error & ER_AC_ERROR))
s->mb_skipped=0; continue; // undamaged inter
if(IS_8X8(mb_type)){
int mb_index= mb_x*2 + mb_y*2*s->b8_stride; s->mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD;
s->mb_intra = 0;
s->mb_skipped = 0;
if (IS_8X8(mb_type)) {
int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride;
int j; int j;
s->mv_type = MV_TYPE_8X8; s->mv_type = MV_TYPE_8X8;
for(j=0; j<4; j++){ for (j = 0; j < 4; j++) {
s->mv[0][j][0] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0]; s->mv[0][j][0] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0];
s->mv[0][j][1] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1]; s->mv[0][j][1] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1];
} }
}else{ } else {
s->mv_type = MV_TYPE_16X16; s->mv_type = MV_TYPE_16X16;
s->mv[0][0][0] = s->current_picture.f.motion_val[dir][ mb_x*2 + mb_y*2*s->b8_stride ][0]; s->mv[0][0][0] = s->current_picture.f.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0];
s->mv[0][0][1] = s->current_picture.f.motion_val[dir][ mb_x*2 + mb_y*2*s->b8_stride ][1]; s->mv[0][0][1] = s->current_picture.f.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1];
} }
s->dsp.clear_blocks(s->block[0]); s->dsp.clear_blocks(s->block[0]);
s->mb_x= mb_x; s->mb_x = mb_x;
s->mb_y= mb_y; s->mb_y = mb_y;
decode_mb(s, 0/*FIXME h264 partitioned slices need this set*/); decode_mb(s, 0 /* FIXME h264 partitioned slices need this set */);
} }
} }
/* guess MVs */ /* guess MVs */
if(s->pict_type==AV_PICTURE_TYPE_B){ if (s->pict_type == AV_PICTURE_TYPE_B) {
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int xy= mb_x*2 + mb_y*2*s->b8_stride; int xy = mb_x * 2 + mb_y * 2 * s->b8_stride;
const int mb_xy= mb_x + mb_y * s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type= s->current_picture.f.mb_type[mb_xy]; const int mb_type = s->current_picture.f.mb_type[mb_xy];
error= s->error_status_table[mb_xy];
error = s->error_status_table[mb_xy];
if(IS_INTRA(mb_type)) continue;
if(!(error&ER_MV_ERROR)) continue; //inter with undamaged MV if (IS_INTRA(mb_type))
if(!(error&ER_AC_ERROR)) continue; //undamaged inter continue;
if (!(error & ER_MV_ERROR))
s->mv_dir = MV_DIR_FORWARD|MV_DIR_BACKWARD; continue; // inter with undamaged MV
if(!s->last_picture.f.data[0]) s->mv_dir &= ~MV_DIR_FORWARD; if (!(error & ER_AC_ERROR))
if(!s->next_picture.f.data[0]) s->mv_dir &= ~MV_DIR_BACKWARD; continue; // undamaged inter
s->mb_intra=0;
s->mv_type = MV_TYPE_16X16; s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
s->mb_skipped=0; if (!s->last_picture.f.data[0])
s->mv_dir &= ~MV_DIR_FORWARD;
if(s->pp_time){ if (!s->next_picture.f.data[0])
int time_pp= s->pp_time; s->mv_dir &= ~MV_DIR_BACKWARD;
int time_pb= s->pb_time; s->mb_intra = 0;
s->mv_type = MV_TYPE_16X16;
s->mb_skipped = 0;
if (s->pp_time) {
int time_pp = s->pp_time;
int time_pb = s->pb_time;
if (s->avctx->codec_id == CODEC_ID_H264) { if (s->avctx->codec_id == CODEC_ID_H264) {
//FIXME // FIXME
} else { } else {
ff_thread_await_progress((AVFrame *) s->next_picture_ptr, ff_thread_await_progress((AVFrame *) s->next_picture_ptr, mb_y, 0);
mb_y, 0);
} }
s->mv[0][0][0] = s->next_picture.f.motion_val[0][xy][0] * time_pb / time_pp; s->mv[0][0][0] = s->next_picture.f.motion_val[0][xy][0] * time_pb / time_pp;
s->mv[0][0][1] = s->next_picture.f.motion_val[0][xy][1] * time_pb / time_pp; s->mv[0][0][1] = s->next_picture.f.motion_val[0][xy][1] * time_pb / time_pp;
s->mv[1][0][0] = s->next_picture.f.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp; s->mv[1][0][0] = s->next_picture.f.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp;
s->mv[1][0][1] = s->next_picture.f.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp; s->mv[1][0][1] = s->next_picture.f.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp;
}else{ } else {
s->mv[0][0][0]= 0; s->mv[0][0][0] = 0;
s->mv[0][0][1]= 0; s->mv[0][0][1] = 0;
s->mv[1][0][0]= 0; s->mv[1][0][0] = 0;
s->mv[1][0][1]= 0; s->mv[1][0][1] = 0;
} }
s->dsp.clear_blocks(s->block[0]); s->dsp.clear_blocks(s->block[0]);
s->mb_x= mb_x; s->mb_x = mb_x;
s->mb_y= mb_y; s->mb_y = mb_y;
decode_mb(s, 0); decode_mb(s, 0);
} }
} }
}else } else
guess_mv(s); guess_mv(s);
/* the filters below are not XvMC compatible, skip them */ /* the filters below are not XvMC compatible, skip them */
if(CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration) if (CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration)
goto ec_clean; goto ec_clean;
/* fill DC for inter blocks */ /* fill DC for inter blocks */
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int dc, dcu, dcv, y, n; int dc, dcu, dcv, y, n;
int16_t *dc_ptr; int16_t *dc_ptr;
uint8_t *dest_y, *dest_cb, *dest_cr; uint8_t *dest_y, *dest_cb, *dest_cr;
const int mb_xy= mb_x + mb_y * s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->current_picture.f.mb_type[mb_xy]; const int mb_type = s->current_picture.f.mb_type[mb_xy];
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if(IS_INTRA(mb_type) && s->partitioned_frame) continue; if (IS_INTRA(mb_type) && s->partitioned_frame)
// if(error&ER_MV_ERROR) continue; //inter data damaged FIXME is this good? continue;
// if (error & ER_MV_ERROR)
// continue; // inter data damaged FIXME is this good?
dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize;
dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize;
dest_cr = s->current_picture.f.data[2] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dest_cr = s->current_picture.f.data[2] + mb_x * 8 + mb_y * 8 * s->uvlinesize;
dc_ptr= &s->dc_val[0][mb_x*2 + mb_y*2*s->b8_stride]; dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride];
for(n=0; n<4; n++){ for (n = 0; n < 4; n++) {
dc=0; dc = 0;
for(y=0; y<8; y++){ for (y = 0; y < 8; y++) {
int x; int x;
for(x=0; x<8; x++){ for (x = 0; x < 8; x++)
dc+= dest_y[x + (n&1)*8 + (y + (n>>1)*8)*s->linesize]; dc += dest_y[x + (n & 1) * 8 +
} (y + (n >> 1) * 8) * s->linesize];
} }
dc_ptr[(n&1) + (n>>1)*s->b8_stride]= (dc+4)>>3; dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3;
} }
dcu=dcv=0; dcu = dcv = 0;
for(y=0; y<8; y++){ for (y = 0; y < 8; y++) {
int x; int x;
for(x=0; x<8; x++){ for (x = 0; x < 8; x++) {
dcu += dest_cb[x + y * s->uvlinesize]; dcu += dest_cb[x + y * s->uvlinesize];
dcv += dest_cr[x + y * s->uvlinesize]; dcv += dest_cr[x + y * s->uvlinesize];
} }
} }
s->dc_val[1][mb_x + mb_y*s->mb_stride]= (dcu+4)>>3; s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3;
s->dc_val[2][mb_x + mb_y*s->mb_stride]= (dcv+4)>>3; s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3;
} }
} }
/* guess DC for damaged blocks */ /* guess DC for damaged blocks */
guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1); guess_dc(s, s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride, 1);
guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0); guess_dc(s, s->dc_val[1], s->mb_width, s->mb_height, s->mb_stride, 0);
guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0); guess_dc(s, s->dc_val[2], s->mb_width, s->mb_height, s->mb_stride, 0);
/* filter luma DC */ /* filter luma DC */
filter181(s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride); filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride);
/* render DC only intra */ /* render DC only intra */
for(mb_y=0; mb_y<s->mb_height; mb_y++){ for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x<s->mb_width; mb_x++){ for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
uint8_t *dest_y, *dest_cb, *dest_cr; uint8_t *dest_y, *dest_cb, *dest_cr;
const int mb_xy= mb_x + mb_y * s->mb_stride; const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->current_picture.f.mb_type[mb_xy]; const int mb_type = s->current_picture.f.mb_type[mb_xy];
error= s->error_status_table[mb_xy]; error = s->error_status_table[mb_xy];
if(IS_INTER(mb_type)) continue; if (IS_INTER(mb_type))
if(!(error&ER_AC_ERROR)) continue; //undamaged continue;
if (!(error & ER_AC_ERROR))
continue; // undamaged
dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize;
dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize;
...@@ -1129,27 +1244,34 @@ void ff_er_frame_end(MpegEncContext *s){ ...@@ -1129,27 +1244,34 @@ void ff_er_frame_end(MpegEncContext *s){
} }
} }
if(s->avctx->error_concealment&FF_EC_DEBLOCK){ if (s->avctx->error_concealment & FF_EC_DEBLOCK) {
/* filter horizontal block boundaries */ /* filter horizontal block boundaries */
h_block_filter(s, s->current_picture.f.data[0], s->mb_width*2, s->mb_height*2, s->linesize , 1); h_block_filter(s, s->current_picture.f.data[0], s->mb_width * 2,
h_block_filter(s, s->current_picture.f.data[1], s->mb_width , s->mb_height , s->uvlinesize, 0); s->mb_height * 2, s->linesize, 1);
h_block_filter(s, s->current_picture.f.data[2], s->mb_width , s->mb_height , s->uvlinesize, 0); h_block_filter(s, s->current_picture.f.data[1], s->mb_width,
s->mb_height , s->uvlinesize, 0);
h_block_filter(s, s->current_picture.f.data[2], s->mb_width,
s->mb_height , s->uvlinesize, 0);
/* filter vertical block boundaries */ /* filter vertical block boundaries */
v_block_filter(s, s->current_picture.f.data[0], s->mb_width*2, s->mb_height*2, s->linesize , 1); v_block_filter(s, s->current_picture.f.data[0], s->mb_width * 2,
v_block_filter(s, s->current_picture.f.data[1], s->mb_width , s->mb_height , s->uvlinesize, 0); s->mb_height * 2, s->linesize, 1);
v_block_filter(s, s->current_picture.f.data[2], s->mb_width , s->mb_height , s->uvlinesize, 0); v_block_filter(s, s->current_picture.f.data[1], s->mb_width,
s->mb_height , s->uvlinesize, 0);
v_block_filter(s, s->current_picture.f.data[2], s->mb_width,
s->mb_height , s->uvlinesize, 0);
} }
ec_clean: ec_clean:
/* clean a few tables */ /* clean a few tables */
for(i=0; i<s->mb_num; i++){ for (i = 0; i < s->mb_num; i++) {
const int mb_xy= s->mb_index2xy[i]; const int mb_xy = s->mb_index2xy[i];
int error= s->error_status_table[mb_xy]; int error = s->error_status_table[mb_xy];
if(s->pict_type!=AV_PICTURE_TYPE_B && (error&(ER_DC_ERROR|ER_MV_ERROR|ER_AC_ERROR))){ if (s->pict_type != AV_PICTURE_TYPE_B &&
s->mbskip_table[mb_xy]=0; (error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) {
s->mbskip_table[mb_xy] = 0;
} }
s->mbintra_table[mb_xy]=1; s->mbintra_table[mb_xy] = 1;
} }
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment