Commit 867381b8 authored by Mark Thompson's avatar Mark Thompson

lavc: Add coded bitstream read/write support for H.265

parent acf06f45
......@@ -1741,6 +1741,7 @@ CONFIG_EXTRA="
cabac
cbs
cbs_h264
cbs_h265
dirac_parse
dvprofile
faandct
......@@ -1968,6 +1969,7 @@ threads_if_any="$THREADS_LIST"
# subsystems
cbs_h264_select="cbs golomb"
cbs_h265_select="cbs golomb"
dct_select="rdft"
dirac_parse_select="golomb"
error_resilience_select="me_cmp"
......
......@@ -55,6 +55,7 @@ OBJS-$(CONFIG_BSWAPDSP) += bswapdsp.o
OBJS-$(CONFIG_CABAC) += cabac.o
OBJS-$(CONFIG_CBS) += cbs.o
OBJS-$(CONFIG_CBS_H264) += cbs_h2645.o h2645_parse.o
OBJS-$(CONFIG_CBS_H265) += cbs_h2645.o h2645_parse.o
OBJS-$(CONFIG_DCT) += dct.o dct32_fixed.o dct32_float.o
OBJS-$(CONFIG_ERROR_RESILIENCE) += error_resilience.o
OBJS-$(CONFIG_FAANDCT) += faandct.o
......
......@@ -31,6 +31,9 @@ static const CodedBitstreamType *cbs_type_table[] = {
#if CONFIG_CBS_H264
&ff_cbs_type_h264,
#endif
#if CONFIG_CBS_H265
&ff_cbs_type_h265,
#endif
};
int ff_cbs_init(CodedBitstreamContext *ctx,
......
......@@ -23,10 +23,12 @@
#include "cbs.h"
#include "cbs_internal.h"
#include "cbs_h264.h"
#include "cbs_h265.h"
#include "golomb.h"
#include "h264.h"
#include "h264_sei.h"
#include "h2645_parse.h"
#include "hevc.h"
static int cbs_read_ue_golomb(CodedBitstreamContext *ctx, BitstreamContext *bc,
......@@ -237,6 +239,7 @@ static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
#define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
#define FUNC_H264(rw, name) FUNC_NAME(rw, h264, name)
#define FUNC_H265(rw, name) FUNC_NAME(rw, h265, name)
#define READ
......@@ -299,6 +302,10 @@ static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(READWRITE, name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#undef READ
#undef READWRITE
#undef RWContext
......@@ -368,6 +375,10 @@ static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(READWRITE, name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#undef WRITE
#undef READWRITE
#undef RWContext
......@@ -428,6 +439,40 @@ static void cbs_h264_free_nal_unit(CodedBitstreamUnit *unit)
av_freep(&unit->content);
}
static void cbs_h265_free_nal_unit(CodedBitstreamUnit *unit)
{
switch (unit->type) {
case HEVC_NAL_VPS:
av_freep(&((H265RawVPS*)unit->content)->extension_data.data);
break;
case HEVC_NAL_SPS:
av_freep(&((H265RawSPS*)unit->content)->extension_data.data);
break;
case HEVC_NAL_PPS:
av_freep(&((H265RawPPS*)unit->content)->extension_data.data);
break;
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
av_freep(&((H265RawSlice*)unit->content)->data);
break;
}
av_freep(&unit->content);
}
static int cbs_h2645_fragment_add_nals(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag,
const H2645Packet *packet)
......@@ -542,6 +587,58 @@ static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
"header.\n", bytestream2_get_bytes_left(&gbc));
}
} else if (header && frag->data[0] && codec_id == AV_CODEC_ID_HEVC) {
// HVCC header.
size_t size, start, end;
int i, j, nb_arrays, nal_unit_type, nb_nals, version;
priv->mp4 = 1;
bytestream2_init(&gbc, frag->data, frag->data_size);
if (bytestream2_get_bytes_left(&gbc) < 23)
return AVERROR_INVALIDDATA;
version = bytestream2_get_byte(&gbc);
if (version != 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid HVCC header: "
"first byte %u.", version);
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gbc, 20);
priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
nb_arrays = bytestream2_get_byte(&gbc);
for (i = 0; i < nb_arrays; i++) {
nal_unit_type = bytestream2_get_byte(&gbc) & 0x3f;
nb_nals = bytestream2_get_be16(&gbc);
start = bytestream2_tell(&gbc);
for (j = 0; j < nb_nals; j++) {
if (bytestream2_get_bytes_left(&gbc) < 2)
return AVERROR_INVALIDDATA;
size = bytestream2_get_be16(&gbc);
if (bytestream2_get_bytes_left(&gbc) < size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbc, size);
}
end = bytestream2_tell(&gbc);
err = ff_h2645_packet_split(&priv->read_packet,
frag->data + start, end - start,
ctx->log_ctx, 1, 2, AV_CODEC_ID_HEVC);
if (err < 0) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
"HVCC array %d (%d NAL units of type %d).\n",
i, nb_nals, nal_unit_type);
return err;
}
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
}
} else {
// Annex B, or later MP4 with already-known parameters.
......@@ -582,6 +679,9 @@ static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
cbs_h2645_replace_ps(4, SPS, sps, seq_parameter_set_id)
cbs_h2645_replace_ps(4, PPS, pps, pic_parameter_set_id)
cbs_h2645_replace_ps(5, VPS, vps, vps_video_parameter_set_id)
cbs_h2645_replace_ps(5, SPS, sps, sps_seq_parameter_set_id)
cbs_h2645_replace_ps(5, PPS, pps, pps_pic_parameter_set_id)
static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
......@@ -730,6 +830,150 @@ static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
return 0;
}
static int cbs_h265_read_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
BitstreamContext bc;
int err;
err = bitstream_init(&bc, unit->data, 8 * unit->data_size);
if (err < 0)
return err;
switch (unit->type) {
case HEVC_NAL_VPS:
{
H265RawVPS *vps;
vps = av_mallocz(sizeof(*vps));
if (!vps)
return AVERROR(ENOMEM);
err = cbs_h265_read_vps(ctx, &bc, vps);
if (err >= 0)
err = cbs_h265_replace_vps(ctx, vps);
if (err < 0) {
av_free(vps);
return err;
}
unit->content = vps;
}
break;
case HEVC_NAL_SPS:
{
H265RawSPS *sps;
sps = av_mallocz(sizeof(*sps));
if (!sps)
return AVERROR(ENOMEM);
err = cbs_h265_read_sps(ctx, &bc, sps);
if (err >= 0)
err = cbs_h265_replace_sps(ctx, sps);
if (err < 0) {
av_free(sps);
return err;
}
unit->content = sps;
}
break;
case HEVC_NAL_PPS:
{
H265RawPPS *pps;
pps = av_mallocz(sizeof(*pps));
if (!pps)
return AVERROR(ENOMEM);
err = cbs_h265_read_pps(ctx, &bc, pps);
if (err >= 0)
err = cbs_h265_replace_pps(ctx, pps);
if (err < 0) {
av_free(pps);
return err;
}
unit->content = pps;
}
break;
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
{
H265RawSlice *slice;
int pos, len;
slice = av_mallocz(sizeof(*slice));
if (!slice)
return AVERROR(ENOMEM);
err = cbs_h265_read_slice_segment_header(ctx, &bc, &slice->header);
if (err < 0) {
av_free(slice);
return err;
}
pos = bitstream_tell(&bc);
len = unit->data_size;
if (!unit->data[len - 1]) {
int z;
for (z = 0; z < len && !unit->data[len - z - 1]; z++);
av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
"from slice data.\n", z);
len -= z;
}
slice->data_size = len - pos / 8;
slice->data = av_malloc(slice->data_size);
if (!slice->data) {
av_free(slice);
return AVERROR(ENOMEM);
}
memcpy(slice->data,
unit->data + pos / 8, slice->data_size);
slice->data_bit_start = pos % 8;
unit->content = slice;
}
break;
case HEVC_NAL_AUD:
{
H265RawAUD *aud;
aud = av_mallocz(sizeof(*aud));
if (!aud)
return AVERROR(ENOMEM);
err = cbs_h265_read_aud(ctx, &bc, aud);
if (err < 0) {
av_free(aud);
return err;
}
unit->content = aud;
}
break;
default:
return AVERROR(ENOSYS);
}
return 0;
}
static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
......@@ -842,6 +1086,127 @@ static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
return 0;
}
static int cbs_h265_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
{
int err;
switch (unit->type) {
case HEVC_NAL_VPS:
{
H265RawVPS *vps = unit->content;
err = cbs_h265_write_vps(ctx, pbc, vps);
if (err < 0)
return err;
err = cbs_h265_replace_vps(ctx, vps);
if (err < 0)
return err;
}
break;
case HEVC_NAL_SPS:
{
H265RawSPS *sps = unit->content;
err = cbs_h265_write_sps(ctx, pbc, sps);
if (err < 0)
return err;
err = cbs_h265_replace_sps(ctx, sps);
if (err < 0)
return err;
}
break;
case HEVC_NAL_PPS:
{
H265RawPPS *pps = unit->content;
err = cbs_h265_write_pps(ctx, pbc, pps);
if (err < 0)
return err;
err = cbs_h265_replace_pps(ctx, pps);
if (err < 0)
return err;
}
break;
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
{
H265RawSlice *slice = unit->content;
BitstreamContext bc;
int bits_left, end, zeroes;
err = cbs_h265_write_slice_segment_header(ctx, pbc, &slice->header);
if (err < 0)
return err;
if (slice->data) {
if (slice->data_size * 8 + 8 > put_bits_left(pbc))
return AVERROR(ENOSPC);
bitstream_init(&bc, slice->data, slice->data_size * 8);
bitstream_skip(&bc, slice->data_bit_start);
// Copy in two-byte blocks, but stop before copying the
// rbsp_stop_one_bit in the final byte.
while (bitstream_bits_left(&bc) > 23)
put_bits(pbc, 16, bitstream_read(&bc, 16));
bits_left = bitstream_bits_left(&bc);
end = bitstream_read(&bc, bits_left);
// rbsp_stop_one_bit must be present here.
av_assert0(end);
zeroes = ff_ctz(end);
if (bits_left > zeroes + 1)
put_bits(pbc, bits_left - zeroes - 1,
end >> (zeroes + 1));
put_bits(pbc, 1, 1);
while (put_bits_count(pbc) % 8 != 0)
put_bits(pbc, 1, 0);
} else {
// No slice data - that was just the header.
}
}
break;
case HEVC_NAL_AUD:
{
err = cbs_h265_write_aud(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
default:
av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
"NAL unit type %d.\n", unit->type);
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
......@@ -866,7 +1231,10 @@ static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
init_put_bits(&pbc, priv->write_buffer, priv->write_buffer_size);
err = cbs_h264_write_nal_unit(ctx, unit, &pbc);
if (codec_id == AV_CODEC_ID_H264)
err = cbs_h264_write_nal_unit(ctx, unit, &pbc);
else
err = cbs_h265_write_nal_unit(ctx, unit, &pbc);
if (err == AVERROR(ENOSPC)) {
// Overflow.
......@@ -927,8 +1295,13 @@ static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
frag->data_bit_padding = unit->data_bit_padding;
}
if (unit->type == H264_NAL_SPS ||
unit->type == H264_NAL_PPS ||
if ((ctx->codec->codec_id == AV_CODEC_ID_H264 &&
(unit->type == H264_NAL_SPS ||
unit->type == H264_NAL_PPS)) ||
(ctx->codec->codec_id == AV_CODEC_ID_HEVC &&
(unit->type == HEVC_NAL_VPS ||
unit->type == HEVC_NAL_SPS ||
unit->type == HEVC_NAL_PPS)) ||
i == 0 /* (Assume this is the start of an access unit.) */) {
// zero_byte
data[dp++] = 0;
......@@ -982,6 +1355,23 @@ static void cbs_h264_close(CodedBitstreamContext *ctx)
av_freep(&h264->pps[i]);
}
static void cbs_h265_close(CodedBitstreamContext *ctx)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
int i;
ff_h2645_packet_uninit(&h265->common.read_packet);
av_freep(&h265->common.write_buffer);
for (i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
av_freep(&h265->vps[i]);
for (i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
av_freep(&h265->sps[i]);
for (i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
av_freep(&h265->pps[i]);
}
const CodedBitstreamType ff_cbs_type_h264 = {
.codec_id = AV_CODEC_ID_H264,
......@@ -995,3 +1385,17 @@ const CodedBitstreamType ff_cbs_type_h264 = {
.free_unit = &cbs_h264_free_nal_unit,
.close = &cbs_h264_close,
};
const CodedBitstreamType ff_cbs_type_h265 = {
.codec_id = AV_CODEC_ID_HEVC,
.priv_data_size = sizeof(CodedBitstreamH265Context),
.split_fragment = &cbs_h2645_split_fragment,
.read_unit = &cbs_h265_read_nal_unit,
.write_unit = &cbs_h2645_write_nal_unit,
.assemble_fragment = &cbs_h2645_assemble_fragment,
.free_unit = &cbs_h265_free_nal_unit,
.close = &cbs_h265_close,
};
/*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_CBS_H265_H
#define AVCODEC_CBS_H265_H
#include <stddef.h>
#include <stdint.h>
#include "cbs_h2645.h"
#include "hevc.h"
typedef struct H265RawNALUnitHeader {
uint8_t forbidden_zero_bit;
uint8_t nal_unit_type;
uint8_t nuh_layer_id;
uint8_t nuh_temporal_id_plus1;
} H265RawNALUnitHeader;
typedef struct H265RawProfileTierLevel {
uint8_t general_profile_space;
uint8_t general_tier_flag;
uint8_t general_profile_idc;
uint8_t general_profile_compatibility_flag[32];
uint8_t general_progressive_source_flag;
uint8_t general_interlaced_source_flag;
uint8_t general_non_packed_constraint_flag;
uint8_t general_frame_only_constraint_flag;
uint8_t general_max_12bit_constraint_flag;
uint8_t general_max_10bit_constraint_flag;
uint8_t general_max_8bit_constraint_flag;
uint8_t general_max_422chroma_constraint_flag;
uint8_t general_max_420chroma_constraint_flag;
uint8_t general_max_monochrome_constraint_flag;
uint8_t general_intra_constraint_flag;
uint8_t general_one_picture_only_constraint_flag;
uint8_t general_lower_bit_rate_constraint_flag;
uint8_t general_max_14bit_constraint_flag;
uint8_t general_inbld_flag;
uint8_t general_level_idc;
uint8_t sub_layer_profile_present_flag[HEVC_MAX_SUB_LAYERS];
uint8_t sub_layer_level_present_flag[HEVC_MAX_SUB_LAYERS];
// TODO: much of that again for each sub-layer.
} H265RawProfileTierLevel;
typedef struct H265RawSubLayerHRDParameters {
uint32_t bit_rate_value_minus1[HEVC_MAX_CPB_CNT];
uint32_t cpb_size_value_minus1[HEVC_MAX_CPB_CNT];
uint32_t cpb_size_du_value_minus1[HEVC_MAX_CPB_CNT];
uint32_t bit_rate_du_value_minus1[HEVC_MAX_CPB_CNT];
uint8_t cbr_flag[HEVC_MAX_CPB_CNT];
} H265RawSubLayerHRDParameters;
typedef struct H265RawHRDParameters {
uint8_t nal_hrd_parameters_present_flag;
uint8_t vcl_hrd_parameters_present_flag;
uint8_t sub_pic_hrd_params_present_flag;
uint8_t tick_divisor_minus2;
uint8_t du_cpb_removal_delay_increment_length_minus1;
uint8_t sub_pic_cpb_params_in_pic_timing_sei_flag;
uint8_t dpb_output_delay_du_length_minus1;
uint8_t bit_rate_scale;
uint8_t cpb_size_scale;
uint8_t cpb_size_du_scale;
uint8_t initial_cpb_removal_delay_length_minus1;
uint8_t au_cpb_removal_delay_length_minus1;
uint8_t dpb_output_delay_length_minus1;
uint8_t fixed_pic_rate_general_flag[HEVC_MAX_SUB_LAYERS];
uint8_t fixed_pic_rate_within_cvs_flag[HEVC_MAX_SUB_LAYERS];
uint16_t elemental_duration_in_tc_minus1[HEVC_MAX_SUB_LAYERS];
uint8_t low_delay_hrd_flag[HEVC_MAX_SUB_LAYERS];
uint8_t cpb_cnt_minus1[HEVC_MAX_SUB_LAYERS];
H265RawSubLayerHRDParameters nal_sub_layer_hrd_parameters[HEVC_MAX_SUB_LAYERS];
H265RawSubLayerHRDParameters vcl_sub_layer_hrd_parameters[HEVC_MAX_SUB_LAYERS];
} H265RawHRDParameters;
typedef struct H265RawVUI {
uint8_t aspect_ratio_info_present_flag;
uint8_t aspect_ratio_idc;
uint16_t sar_width;
uint16_t sar_height;
uint8_t overscan_info_present_flag;
uint8_t overscan_appropriate_flag;
uint8_t video_signal_type_present_flag;
uint8_t video_format;
uint8_t video_full_range_flag;
uint8_t colour_description_present_flag;
uint8_t colour_primaries;
uint8_t transfer_characteristics;
uint8_t matrix_coefficients;
uint8_t chroma_loc_info_present_flag;
uint8_t chroma_sample_loc_type_top_field;
uint8_t chroma_sample_loc_type_bottom_field;
uint8_t neutral_chroma_indication_flag;
uint8_t field_seq_flag;
uint8_t frame_field_info_present_flag;
uint8_t default_display_window_flag;
uint16_t def_disp_win_left_offset;
uint16_t def_disp_win_right_offset;
uint16_t def_disp_win_top_offset;
uint16_t def_disp_win_bottom_offset;
uint8_t vui_timing_info_present_flag;
uint32_t vui_num_units_in_tick;
uint32_t vui_time_scale;
uint8_t vui_poc_proportional_to_timing_flag;
uint32_t vui_num_ticks_poc_diff_one_minus1;
uint8_t vui_hrd_parameters_present_flag;
H265RawHRDParameters hrd_parameters;
uint8_t bitstream_restriction_flag;
uint8_t tiles_fixed_structure_flag;
uint8_t motion_vectors_over_pic_boundaries_flag;
uint8_t restricted_ref_pic_lists_flag;
uint16_t min_spatial_segmentation_idc;
uint8_t max_bytes_per_pic_denom;
uint8_t max_bits_per_min_cu_denom;
uint8_t log2_max_mv_length_horizontal;
uint8_t log2_max_mv_length_vertical;
} H265RawVUI;
typedef struct H265RawPSExtensionData {
uint8_t *data;
size_t bit_length;
} H265RawPSExtensionData;
typedef struct H265RawVPS {
H265RawNALUnitHeader nal_unit_header;
uint8_t vps_video_parameter_set_id;
uint8_t vps_base_layer_internal_flag;
uint8_t vps_base_layer_available_flag;
uint8_t vps_max_layers_minus1;
uint8_t vps_max_sub_layers_minus1;
uint8_t vps_temporal_id_nesting_flag;
H265RawProfileTierLevel profile_tier_level;
uint8_t vps_sub_layer_ordering_info_present_flag;
uint8_t vps_max_dec_pic_buffering_minus1[HEVC_MAX_SUB_LAYERS];
uint8_t vps_max_num_reorder_pics[HEVC_MAX_SUB_LAYERS];
uint32_t vps_max_latency_increase_plus1[HEVC_MAX_SUB_LAYERS];
uint8_t vps_max_layer_id;
uint16_t vps_num_layer_sets_minus1;
uint8_t layer_id_included_flag[HEVC_MAX_LAYER_SETS][HEVC_MAX_LAYERS];
uint8_t vps_timing_info_present_flag;
uint32_t vps_num_units_in_tick;
uint32_t vps_time_scale;
uint8_t vps_poc_proportional_to_timing_flag;
uint32_t vps_num_ticks_poc_diff_one_minus1;
uint16_t vps_num_hrd_parameters;
uint16_t hrd_layer_set_idx[HEVC_MAX_LAYER_SETS];
uint8_t cprms_present_flag[HEVC_MAX_LAYER_SETS];
H265RawHRDParameters hrd_parameters[HEVC_MAX_LAYER_SETS];
uint8_t vps_extension_flag;
H265RawPSExtensionData extension_data;
} H265RawVPS;
typedef struct H265RawSTRefPicSet {
uint8_t inter_ref_pic_set_prediction_flag;
uint8_t delta_idx_minus1;
uint8_t delta_rps_sign;
uint16_t abs_delta_rps_minus1;
uint8_t used_by_curr_pic_flag[HEVC_MAX_REFS];
uint8_t use_delta_flag[HEVC_MAX_REFS];
uint8_t num_negative_pics;
uint8_t num_positive_pics;
uint16_t delta_poc_s0_minus1[HEVC_MAX_REFS];
uint8_t used_by_curr_pic_s0_flag[HEVC_MAX_REFS];
uint16_t delta_poc_s1_minus1[HEVC_MAX_REFS];
uint8_t used_by_curr_pic_s1_flag[HEVC_MAX_REFS];
} H265RawSTRefPicSet;
typedef struct H265RawScalingList {
uint8_t scaling_list_pred_mode_flag[4][6];
uint8_t scaling_list_pred_matrix_id_delta[4][6];
int16_t scaling_list_dc_coef_minus8[4][6];
int8_t scaling_list_delta_coeff[4][6][64];
} H265RawScalingList;
typedef struct H265RawSPS {
H265RawNALUnitHeader nal_unit_header;
uint8_t sps_video_parameter_set_id;
uint8_t sps_max_sub_layers_minus1;
uint8_t sps_temporal_id_nesting_flag;
H265RawProfileTierLevel profile_tier_level;
uint8_t sps_seq_parameter_set_id;
uint8_t chroma_format_idc;
uint8_t separate_colour_plane_flag;
uint16_t pic_width_in_luma_samples;
uint16_t pic_height_in_luma_samples;
uint8_t conformance_window_flag;
uint16_t conf_win_left_offset;
uint16_t conf_win_right_offset;
uint16_t conf_win_top_offset;
uint16_t conf_win_bottom_offset;
uint8_t bit_depth_luma_minus8;
uint8_t bit_depth_chroma_minus8;
uint8_t log2_max_pic_order_cnt_lsb_minus4;
uint8_t sps_sub_layer_ordering_info_present_flag;
uint8_t sps_max_dec_pic_buffering_minus1[HEVC_MAX_SUB_LAYERS];
uint8_t sps_max_num_reorder_pics[HEVC_MAX_SUB_LAYERS];
uint32_t sps_max_latency_increase_plus1[HEVC_MAX_SUB_LAYERS];
uint8_t log2_min_luma_coding_block_size_minus3;
uint8_t log2_diff_max_min_luma_coding_block_size;
uint8_t log2_min_luma_transform_block_size_minus2;
uint8_t log2_diff_max_min_luma_transform_block_size;
uint8_t max_transform_hierarchy_depth_inter;
uint8_t max_transform_hierarchy_depth_intra;
uint8_t scaling_list_enabled_flag;
uint8_t sps_scaling_list_data_present_flag;
H265RawScalingList scaling_list;
uint8_t amp_enabled_flag;
uint8_t sample_adaptive_offset_enabled_flag;
uint8_t pcm_enabled_flag;
uint8_t pcm_sample_bit_depth_luma_minus1;
uint8_t pcm_sample_bit_depth_chroma_minus1;
uint8_t log2_min_pcm_luma_coding_block_size_minus3;
uint8_t log2_diff_max_min_pcm_luma_coding_block_size;
uint8_t pcm_loop_filter_disabled_flag;
uint8_t num_short_term_ref_pic_sets;
H265RawSTRefPicSet st_ref_pic_set[HEVC_MAX_SHORT_TERM_REF_PIC_SETS];
uint8_t long_term_ref_pics_present_flag;
uint8_t num_long_term_ref_pics_sps;
uint16_t lt_ref_pic_poc_lsb_sps[HEVC_MAX_LONG_TERM_REF_PICS];
uint8_t used_by_curr_pic_lt_sps_flag[HEVC_MAX_LONG_TERM_REF_PICS];
uint8_t sps_temporal_mvp_enabled_flag;
uint8_t strong_intra_smoothing_enabled_flag;
uint8_t vui_parameters_present_flag;
H265RawVUI vui;
uint8_t sps_extension_present_flag;
uint8_t sps_range_extension_flag;
uint8_t sps_multilayer_extension_flag;
uint8_t sps_3d_extension_flag;
uint8_t sps_scc_extension_flag;
uint8_t sps_extension_4bits;
H265RawPSExtensionData extension_data;
// Range extension.
uint8_t transform_skip_rotation_enabled_flag;
uint8_t transform_skip_context_enabled_flag;
uint8_t implicit_rdpcm_enabled_flag;
uint8_t explicit_rdpcm_enabled_flag;
uint8_t extended_precision_processing_flag;
uint8_t intra_smoothing_disabled_flag;
uint8_t high_precision_offsets_enabled_flag;
uint8_t persistent_rice_adaptation_enabled_flag;
uint8_t cabac_bypass_alignment_enabled_flag;
// Screen content coding extension.
uint8_t sps_curr_pic_ref_enabled_flag;
uint8_t palette_mode_enabled_flag;
uint8_t palette_max_size;
uint8_t delta_palette_max_predictor_size;
uint8_t sps_palette_predictor_initializer_present_flag;
uint8_t sps_num_palette_predictor_initializer_minus1;
uint16_t sps_palette_predictor_initializers[3][128];
uint8_t motion_vector_resolution_control_idc;
uint8_t intra_boundary_filtering_disable_flag;
} H265RawSPS;
typedef struct H265RawPPS {
H265RawNALUnitHeader nal_unit_header;
uint8_t pps_pic_parameter_set_id;
uint8_t pps_seq_parameter_set_id;
uint8_t dependent_slice_segments_enabled_flag;
uint8_t output_flag_present_flag;
uint8_t num_extra_slice_header_bits;
uint8_t sign_data_hiding_enabled_flag;
uint8_t cabac_init_present_flag;
uint8_t num_ref_idx_l0_default_active_minus1;
uint8_t num_ref_idx_l1_default_active_minus1;
int8_t init_qp_minus26;
uint8_t constrained_intra_pred_flag;
uint8_t transform_skip_enabled_flag;
uint8_t cu_qp_delta_enabled_flag;
uint8_t diff_cu_qp_delta_depth;
int8_t pps_cb_qp_offset;
int8_t pps_cr_qp_offset;
uint8_t pps_slice_chroma_qp_offsets_present_flag;
uint8_t weighted_pred_flag;
uint8_t weighted_bipred_flag;
uint8_t transquant_bypass_enabled_flag;
uint8_t tiles_enabled_flag;
uint8_t entropy_coding_sync_enabled_flag;
uint8_t num_tile_columns_minus1;
uint8_t num_tile_rows_minus1;
uint8_t uniform_spacing_flag;
uint16_t column_width_minus1[HEVC_MAX_TILE_COLUMNS];
uint16_t row_height_minus1[HEVC_MAX_TILE_ROWS];
uint8_t loop_filter_across_tiles_enabled_flag;
uint8_t pps_loop_filter_across_slices_enabled_flag;
uint8_t deblocking_filter_control_present_flag;
uint8_t deblocking_filter_override_enabled_flag;
uint8_t pps_deblocking_filter_disabled_flag;
int8_t pps_beta_offset_div2;
int8_t pps_tc_offset_div2;
uint8_t pps_scaling_list_data_present_flag;
H265RawScalingList scaling_list;
uint8_t lists_modification_present_flag;
uint8_t log2_parallel_merge_level_minus2;
uint8_t slice_segment_header_extension_present_flag;
uint8_t pps_extension_present_flag;
uint8_t pps_range_extension_flag;
uint8_t pps_multilayer_extension_flag;
uint8_t pps_3d_extension_flag;
uint8_t pps_scc_extension_flag;
uint8_t pps_extension_4bits;
H265RawPSExtensionData extension_data;
// Range extension.
uint8_t log2_max_transform_skip_block_size_minus2;
uint8_t cross_component_prediction_enabled_flag;
uint8_t chroma_qp_offset_list_enabled_flag;
uint8_t diff_cu_chroma_qp_offset_depth;
uint8_t chroma_qp_offset_list_len_minus1;
int8_t cb_qp_offset_list[6];
int8_t cr_qp_offset_list[6];
uint8_t log2_sao_offset_scale_luma;
uint8_t log2_sao_offset_scale_chroma;
// Screen content coding extension.
uint8_t pps_curr_pic_ref_enabled_flag;
uint8_t residual_adaptive_colour_transform_enabled_flag;
uint8_t pps_slice_act_qp_offsets_present_flag;
int8_t pps_act_y_qp_offset_plus5;
int8_t pps_act_cb_qp_offset_plus5;
int8_t pps_act_cr_qp_offset_plus3;
uint8_t pps_palette_predictor_initializer_present_flag;
uint8_t pps_num_palette_predictor_initializer;
uint8_t monochrome_palette_flag;
uint8_t luma_bit_depth_entry_minus8;
uint8_t chroma_bit_depth_entry_minus8;
uint16_t pps_palette_predictor_initializers[3][128];
} H265RawPPS;
typedef struct H265RawAUD {
H265RawNALUnitHeader nal_unit_header;
uint8_t pic_type;
} H265RawAUD;
typedef struct H265RawSliceHeader {
H265RawNALUnitHeader nal_unit_header;
uint8_t first_slice_segment_in_pic_flag;
uint8_t no_output_of_prior_pics_flag;
uint8_t slice_pic_parameter_set_id;
uint8_t dependent_slice_segment_flag;
uint16_t slice_segment_address;
uint8_t slice_reserved_flag[8];
uint8_t slice_type;
uint8_t pic_output_flag;
uint8_t colour_plane_id;
uint16_t slice_pic_order_cnt_lsb;
uint8_t short_term_ref_pic_set_sps_flag;
H265RawSTRefPicSet short_term_ref_pic_set;
uint8_t short_term_ref_pic_set_idx;
uint8_t num_long_term_sps;
uint8_t num_long_term_pics;
uint8_t lt_idx_sps[HEVC_MAX_REFS];
uint8_t poc_lsb_lt[HEVC_MAX_REFS];
uint8_t used_by_curr_pic_lt_flag[HEVC_MAX_REFS];
uint8_t delta_poc_msb_present_flag[HEVC_MAX_REFS];
uint32_t delta_poc_msb_cycle_lt[HEVC_MAX_REFS];
uint8_t slice_temporal_mvp_enabled_flag;
uint8_t slice_sao_luma_flag;
uint8_t slice_sao_chroma_flag;
uint8_t num_ref_idx_active_override_flag;
uint8_t num_ref_idx_l0_active_minus1;
uint8_t num_ref_idx_l1_active_minus1;
uint8_t ref_pic_list_modification_flag_l0;
uint8_t list_entry_l0[HEVC_MAX_REFS];
uint8_t ref_pic_list_modification_flag_l1;
uint8_t list_entry_l1[HEVC_MAX_REFS];
uint8_t mvd_l1_zero_flag;
uint8_t cabac_init_flag;
uint8_t collocated_from_l0_flag;
uint8_t collocated_ref_idx;
uint8_t luma_log2_weight_denom;
int8_t delta_chroma_log2_weight_denom;
uint8_t luma_weight_l0_flag[HEVC_MAX_REFS];
uint8_t chroma_weight_l0_flag[HEVC_MAX_REFS];
int8_t delta_luma_weight_l0[HEVC_MAX_REFS];
int16_t luma_offset_l0[HEVC_MAX_REFS];
int8_t delta_chroma_weight_l0[HEVC_MAX_REFS][2];
int16_t chroma_offset_l0[HEVC_MAX_REFS][2];
uint8_t luma_weight_l1_flag[HEVC_MAX_REFS];
uint8_t chroma_weight_l1_flag[HEVC_MAX_REFS];
int8_t delta_luma_weight_l1[HEVC_MAX_REFS];
int16_t luma_offset_l1[HEVC_MAX_REFS];
int8_t delta_chroma_weight_l1[HEVC_MAX_REFS][2];
int16_t chroma_offset_l1[HEVC_MAX_REFS][2];
uint8_t five_minus_max_num_merge_cand;
uint8_t use_integer_mv_flag;
int8_t slice_qp_delta;
int8_t slice_cb_qp_offset;
int8_t slice_cr_qp_offset;
int8_t slice_act_y_qp_offset;
int8_t slice_act_cb_qp_offset;
int8_t slice_act_cr_qp_offset;
uint8_t cu_chroma_qp_offset_enabled_flag;
uint8_t deblocking_filter_override_flag;
uint8_t slice_deblocking_filter_disabled_flag;
int8_t slice_beta_offset_div2;
int8_t slice_tc_offset_div2;
uint8_t slice_loop_filter_across_slices_enabled_flag;
uint16_t num_entry_point_offsets;
uint8_t offset_len_minus1;
uint32_t entry_point_offset_minus1[HEVC_MAX_ENTRY_POINT_OFFSETS];
uint16_t slice_segment_header_extension_length;
uint8_t slice_segment_header_extension_data_byte[256];
} H265RawSliceHeader;
typedef struct H265RawSlice {
H265RawSliceHeader header;
uint8_t *data;
size_t data_size;
int data_bit_start;
} H265RawSlice;
typedef struct CodedBitstreamH265Context {
// Reader/writer context in common with the H.264 implementation.
CodedBitstreamH2645Context common;
// All currently available parameter sets. These are updated when
// any parameter set NAL unit is read/written with this context.
H265RawVPS *vps[HEVC_MAX_VPS_COUNT];
H265RawSPS *sps[HEVC_MAX_SPS_COUNT];
H265RawPPS *pps[HEVC_MAX_PPS_COUNT];
// The currently active parameter sets. These are updated when any
// NAL unit refers to the relevant parameter set. These pointers
// must also be present in the arrays above.
const H265RawVPS *active_vps;
const H265RawSPS *active_sps;
const H265RawPPS *active_pps;
} CodedBitstreamH265Context;
#endif /* AVCODEC_CBS_H265_H */
/*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static int FUNC(rbsp_trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
av_unused int one = 1, zero = 0;
xu(1, rbsp_stop_one_bit, one, 1, 1);
while (byte_alignment(rw) != 0)
xu(1, rbsp_alignment_zero_bit, zero, 0, 0);
return 0;
}
static int FUNC(nal_unit_header)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawNALUnitHeader *current,
int expected_nal_unit_type)
{
int err;
u(1, forbidden_zero_bit, 0, 0);
if (expected_nal_unit_type >= 0)
u(6, nal_unit_type, expected_nal_unit_type,
expected_nal_unit_type);
else
u(6, nal_unit_type, 0, 63);
u(6, nuh_layer_id, 0, 62);
u(3, nuh_temporal_id_plus1, 1, 7);
return 0;
}
static int FUNC(byte_alignment)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
av_unused int one = 1, zero = 0;
xu(1, alignment_bit_equal_to_one, one, 1, 1);
while (byte_alignment(rw) != 0)
xu(1, alignment_bit_equal_to_zero, zero, 0, 0);
return 0;
}
static int FUNC(extension_data)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPSExtensionData *current)
{
int err;
size_t k;
#ifdef READ
BitstreamContext start;
uint8_t bit;
start = *rw;
for (k = 0; cbs_h2645_read_more_rbsp_data(rw); k++);
current->bit_length = k;
if (k > 0) {
*rw = start;
allocate(current->data, (current->bit_length + 7) / 8);
for (k = 0; k < current->bit_length; k++) {
xu(1, extension_data, bit, 0, 1);
current->data[k / 8] |= bit << (7 - k % 8);
}
}
#else
for (k = 0; k < current->bit_length; k++)
xu(1, extension_data, current->data[k / 8] >> (7 - k % 8), 0, 1);
#endif
return 0;
}
static int FUNC(profile_tier_level)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawProfileTierLevel *current,
int profile_present_flag,
int max_num_sub_layers_minus1)
{
av_unused unsigned int zero = 0;
int err, i, j;
if (profile_present_flag) {
u(2, general_profile_space, 0, 0);
flag(general_tier_flag);
u(5, general_profile_idc, 0, 31);
for (j = 0; j < 32; j++)
flag(general_profile_compatibility_flag[j]);
flag(general_progressive_source_flag);
flag(general_interlaced_source_flag);
flag(general_non_packed_constraint_flag);
flag(general_frame_only_constraint_flag);
#define profile_compatible(x) (current->general_profile_idc == (x) || \
current->general_profile_compatibility_flag[x])
if (profile_compatible(4) || profile_compatible(5) ||
profile_compatible(6) || profile_compatible(7) ||
profile_compatible(8) || profile_compatible(9) ||
profile_compatible(10)) {
flag(general_max_12bit_constraint_flag);
flag(general_max_10bit_constraint_flag);
flag(general_max_8bit_constraint_flag);
flag(general_max_422chroma_constraint_flag);
flag(general_max_420chroma_constraint_flag);
flag(general_max_monochrome_constraint_flag);
flag(general_intra_constraint_flag);
flag(general_one_picture_only_constraint_flag);
flag(general_lower_bit_rate_constraint_flag);
if (profile_compatible(5) || profile_compatible(9) ||
profile_compatible(10)) {
flag(general_max_14bit_constraint_flag);
xu(24, general_reserved_zero_33bits, zero, 0, 0);
xu(9, general_reserved_zero_33bits, zero, 0, 0);
} else {
xu(24, general_reserved_zero_34bits, zero, 0, 0);
xu(10, general_reserved_zero_34bits, zero, 0, 0);
}
} else {
xu(24, general_reserved_zero_43bits, zero, 0, 0);
xu(19, general_reserved_zero_43bits, zero, 0, 0);
}
if (profile_compatible(1) || profile_compatible(2) ||
profile_compatible(3) || profile_compatible(4) ||
profile_compatible(5) || profile_compatible(9)) {
flag(general_inbld_flag);
} else {
xu(1, general_reserved_zero_bit, zero, 0, 0);
}
#undef profile_compatible
}
u(8, general_level_idc, 0, 255);
for (i = 0; i < max_num_sub_layers_minus1; i++) {
flag(sub_layer_profile_present_flag[i]);
flag(sub_layer_level_present_flag[i]);
}
if (max_num_sub_layers_minus1 > 0) {
for (i = max_num_sub_layers_minus1; i < 8; i++) {
av_unused int zero = 0;
xu(2, reserved_zero_2bits, zero, 0, 0);
}
}
for (i = 0; i < max_num_sub_layers_minus1; i++) {
if (current->sub_layer_profile_present_flag[i])
return AVERROR_PATCHWELCOME;
if (current->sub_layer_level_present_flag[i])
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int FUNC(sub_layer_hrd_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawHRDParameters *hrd,
int nal, int sub_layer_id)
{
H265RawSubLayerHRDParameters *current;
int err, i;
if (nal)
current = &hrd->nal_sub_layer_hrd_parameters[sub_layer_id];
else
current = &hrd->vcl_sub_layer_hrd_parameters[sub_layer_id];
for (i = 0; i <= hrd->cpb_cnt_minus1[sub_layer_id]; i++) {
ue(bit_rate_value_minus1[i], 0, UINT32_MAX - 1);
ue(cpb_size_value_minus1[i], 0, UINT32_MAX - 1);
if (hrd->sub_pic_hrd_params_present_flag) {
ue(cpb_size_du_value_minus1[i], 0, UINT32_MAX - 1);
ue(bit_rate_du_value_minus1[i], 0, UINT32_MAX - 1);
}
flag(cbr_flag[i]);
}
return 0;
}
static int FUNC(hrd_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawHRDParameters *current, int common_inf_present_flag,
int max_num_sub_layers_minus1)
{
int err, i;
if (common_inf_present_flag) {
flag(nal_hrd_parameters_present_flag);
flag(vcl_hrd_parameters_present_flag);
if (current->nal_hrd_parameters_present_flag ||
current->vcl_hrd_parameters_present_flag) {
flag(sub_pic_hrd_params_present_flag);
if (current->sub_pic_hrd_params_present_flag) {
u(8, tick_divisor_minus2, 0, 255);
u(5, du_cpb_removal_delay_increment_length_minus1, 0, 31);
flag(sub_pic_cpb_params_in_pic_timing_sei_flag);
u(5, dpb_output_delay_du_length_minus1, 0, 31);
}
u(4, bit_rate_scale, 0, 15);
u(4, cpb_size_scale, 0, 15);
if (current->sub_pic_hrd_params_present_flag)
u(4, cpb_size_du_scale, 0, 15);
u(5, initial_cpb_removal_delay_length_minus1, 0, 31);
u(5, au_cpb_removal_delay_length_minus1, 0, 31);
u(5, dpb_output_delay_length_minus1, 0, 31);
} else {
infer(sub_pic_hrd_params_present_flag, 0);
infer(initial_cpb_removal_delay_length_minus1, 23);
infer(au_cpb_removal_delay_length_minus1, 23);
infer(dpb_output_delay_length_minus1, 23);
}
}
for (i = 0; i <= max_num_sub_layers_minus1; i++) {
flag(fixed_pic_rate_general_flag[i]);
if (!current->fixed_pic_rate_general_flag[i])
flag(fixed_pic_rate_within_cvs_flag[i]);
else
infer(fixed_pic_rate_within_cvs_flag[i], 1);
if (current->fixed_pic_rate_within_cvs_flag[i]) {
ue(elemental_duration_in_tc_minus1[i], 0, 2047);
infer(low_delay_hrd_flag[i], 0);
} else
flag(low_delay_hrd_flag[i]);
if (!current->low_delay_hrd_flag[i])
ue(cpb_cnt_minus1[i], 0, 31);
else
infer(cpb_cnt_minus1[i], 0);
if (current->nal_hrd_parameters_present_flag)
CHECK(FUNC(sub_layer_hrd_parameters)(ctx, rw, current, 0, i));
if (current->vcl_hrd_parameters_present_flag)
CHECK(FUNC(sub_layer_hrd_parameters)(ctx, rw, current, 1, i));
}
return 0;
}
static int FUNC(vui_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawVUI *current, const H265RawSPS *sps)
{
int err;
flag(aspect_ratio_info_present_flag);
if (current->aspect_ratio_info_present_flag) {
u(8, aspect_ratio_idc, 0, 255);
if (current->aspect_ratio_idc == 255) {
u(16, sar_width, 0, 65535);
u(16, sar_height, 0, 65535);
}
} else {
infer(aspect_ratio_idc, 0);
}
flag(overscan_info_present_flag);
if (current->overscan_info_present_flag)
flag(overscan_appropriate_flag);
flag(video_signal_type_present_flag);
if (current->video_signal_type_present_flag) {
u(3, video_format, 0, 7);
flag(video_full_range_flag);
flag(colour_description_present_flag);
if (current->colour_description_present_flag) {
u(8, colour_primaries, 0, 255);
u(8, transfer_characteristics, 0, 255);
u(8, matrix_coefficients, 0, 255);
} else {
infer(colour_primaries, 2);
infer(transfer_characteristics, 2);
infer(matrix_coefficients, 2);
}
} else {
infer(video_format, 5);
infer(video_full_range_flag, 0);
infer(colour_primaries, 2);
infer(transfer_characteristics, 2);
infer(matrix_coefficients, 2);
}
flag(chroma_loc_info_present_flag);
if (current->chroma_loc_info_present_flag) {
ue(chroma_sample_loc_type_top_field, 0, 5);
ue(chroma_sample_loc_type_bottom_field, 0, 5);
} else {
infer(chroma_sample_loc_type_top_field, 0);
infer(chroma_sample_loc_type_bottom_field, 0);
}
flag(neutral_chroma_indication_flag);
flag(field_seq_flag);
flag(frame_field_info_present_flag);
flag(default_display_window_flag);
if (current->default_display_window_flag) {
ue(def_disp_win_left_offset, 0, 16384);
ue(def_disp_win_right_offset, 0, 16384);
ue(def_disp_win_top_offset, 0, 16384);
ue(def_disp_win_bottom_offset, 0, 16384);
}
flag(vui_timing_info_present_flag);
if (current->vui_timing_info_present_flag) {
u(32, vui_num_units_in_tick, 1, UINT32_MAX);
u(32, vui_time_scale, 1, UINT32_MAX);
flag(vui_poc_proportional_to_timing_flag);
if (current->vui_poc_proportional_to_timing_flag)
ue(vui_num_ticks_poc_diff_one_minus1, 0, UINT32_MAX - 1);
flag(vui_hrd_parameters_present_flag);
if (current->vui_hrd_parameters_present_flag) {
CHECK(FUNC(hrd_parameters)(ctx, rw, &current->hrd_parameters,
1, sps->sps_max_sub_layers_minus1));
}
}
flag(bitstream_restriction_flag);
if (current->bitstream_restriction_flag) {
flag(tiles_fixed_structure_flag);
flag(motion_vectors_over_pic_boundaries_flag);
flag(restricted_ref_pic_lists_flag);
ue(min_spatial_segmentation_idc, 0, 4095);
ue(max_bytes_per_pic_denom, 0, 16);
ue(max_bits_per_min_cu_denom, 0, 16);
ue(log2_max_mv_length_horizontal, 0, 16);
ue(log2_max_mv_length_vertical, 0, 16);
} else {
infer(tiles_fixed_structure_flag, 0);
infer(motion_vectors_over_pic_boundaries_flag, 1);
infer(min_spatial_segmentation_idc, 0);
infer(max_bytes_per_pic_denom, 2);
infer(max_bits_per_min_cu_denom, 1);
infer(log2_max_mv_length_horizontal, 15);
infer(log2_max_mv_length_vertical, 15);
}
return 0;
}
static int FUNC(vps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawVPS *current)
{
int err, i, j;
HEADER("Video Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_VPS));
u(4, vps_video_parameter_set_id, 0, 15);
flag(vps_base_layer_internal_flag);
flag(vps_base_layer_available_flag);
u(6, vps_max_layers_minus1, 0, HEVC_MAX_LAYERS - 1);
u(3, vps_max_sub_layers_minus1, 0, HEVC_MAX_SUB_LAYERS - 1);
flag(vps_temporal_id_nesting_flag);
if (current->vps_max_sub_layers_minus1 == 0 &&
current->vps_temporal_id_nesting_flag != 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"vps_temporal_id_nesting_flag must be 1 if "
"vps_max_sub_layers_minus1 is 0.\n");
return AVERROR_INVALIDDATA;
}
{
av_unused uint16_t ffff = 0xffff;
xu(16, vps_reserved_0xffff_16bits, ffff, 0xffff, 0xffff);
}
CHECK(FUNC(profile_tier_level)(ctx, rw, &current->profile_tier_level,
1, current->vps_max_sub_layers_minus1));
flag(vps_sub_layer_ordering_info_present_flag);
for (i = (current->vps_sub_layer_ordering_info_present_flag ?
0 : current->vps_max_sub_layers_minus1);
i <= current->vps_max_sub_layers_minus1; i++) {
ue(vps_max_dec_pic_buffering_minus1[i], 0, HEVC_MAX_DPB_SIZE - 1);
ue(vps_max_num_reorder_pics[i], 0, current->vps_max_dec_pic_buffering_minus1[i]);
ue(vps_max_latency_increase_plus1[i], 0, UINT32_MAX - 1);
}
if (!current->vps_sub_layer_ordering_info_present_flag) {
for (i = 0; i < current->vps_max_sub_layers_minus1; i++) {
infer(vps_max_dec_pic_buffering_minus1[i],
current->vps_max_dec_pic_buffering_minus1[current->vps_max_sub_layers_minus1]);
infer(vps_max_num_reorder_pics[i],
current->vps_max_num_reorder_pics[current->vps_max_sub_layers_minus1]);
infer(vps_max_latency_increase_plus1[i],
current->vps_max_latency_increase_plus1[current->vps_max_sub_layers_minus1]);
}
}
u(6, vps_max_layer_id, 0, HEVC_MAX_LAYERS - 1);
ue(vps_num_layer_sets_minus1, 0, HEVC_MAX_LAYER_SETS - 1);
for (i = 1; i <= current->vps_num_layer_sets_minus1; i++) {
for (j = 0; j <= current->vps_max_layer_id; j++)
flag(layer_id_included_flag[i][j]);
}
for (j = 0; j <= current->vps_max_layer_id; j++)
infer(layer_id_included_flag[0][j], j == 0);
flag(vps_timing_info_present_flag);
if (current->vps_timing_info_present_flag) {
u(32, vps_num_units_in_tick, 1, UINT32_MAX);
u(32, vps_time_scale, 1, UINT32_MAX);
flag(vps_poc_proportional_to_timing_flag);
if (current->vps_poc_proportional_to_timing_flag)
ue(vps_num_ticks_poc_diff_one_minus1, 0, UINT32_MAX - 1);
ue(vps_num_hrd_parameters, 0, current->vps_num_layer_sets_minus1 + 1);
for (i = 0; i < current->vps_num_hrd_parameters; i++) {
ue(hrd_layer_set_idx[i],
current->vps_base_layer_internal_flag ? 0 : 1,
current->vps_num_layer_sets_minus1);
if (i > 0)
flag(cprms_present_flag[i]);
else
infer(cprms_present_flag[0], 1);
CHECK(FUNC(hrd_parameters)(ctx, rw, &current->hrd_parameters[i],
current->cprms_present_flag[i],
current->vps_max_sub_layers_minus1));
}
}
flag(vps_extension_flag);
if (current->vps_extension_flag)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(st_ref_pic_set)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSTRefPicSet *current, int st_rps_idx,
const H265RawSPS *sps)
{
int err, i, j;
if (st_rps_idx != 0)
flag(inter_ref_pic_set_prediction_flag);
else
infer(inter_ref_pic_set_prediction_flag, 0);
if (current->inter_ref_pic_set_prediction_flag) {
unsigned int ref_rps_idx, num_delta_pocs;
const H265RawSTRefPicSet *ref;
int delta_rps, d_poc;
int ref_delta_poc_s0[HEVC_MAX_REFS], ref_delta_poc_s1[HEVC_MAX_REFS];
int delta_poc_s0[HEVC_MAX_REFS], delta_poc_s1[HEVC_MAX_REFS];
uint8_t used_by_curr_pic_s0[HEVC_MAX_REFS],
used_by_curr_pic_s1[HEVC_MAX_REFS];
if (st_rps_idx == sps->num_short_term_ref_pic_sets)
ue(delta_idx_minus1, 0, st_rps_idx - 1);
else
infer(delta_idx_minus1, 0);
ref_rps_idx = st_rps_idx - (current->delta_idx_minus1 + 1);
ref = &sps->st_ref_pic_set[ref_rps_idx];
num_delta_pocs = ref->num_negative_pics + ref->num_positive_pics;
flag(delta_rps_sign);
ue(abs_delta_rps_minus1, 0, INT16_MAX);
delta_rps = (1 - 2 * current->delta_rps_sign) *
(current->abs_delta_rps_minus1 + 1);
for (j = 0; j <= num_delta_pocs; j++) {
flag(used_by_curr_pic_flag[j]);
if (!current->used_by_curr_pic_flag[j])
flag(use_delta_flag[j]);
else
infer(use_delta_flag[j], 1);
}
// Since the stored form of an RPS here is actually the delta-step
// form used when inter_ref_pic_set_prediction_flag is not set, we
// need to reconstruct that here in order to be able to refer to
// the RPS later (which is required for parsing, because we don't
// even know what syntax elements appear without it). Therefore,
// this code takes the delta-step form of the reference set, turns
// it into the delta-array form, applies the prediction process of
// 7.4.8, converts the result back to the delta-step form, and
// stores that as the current set for future use. Note that the
// inferences here mean that writers using prediction will need
// to fill in the delta-step values correctly as well - since the
// whole RPS prediction process is somewhat overly sophisticated,
// this hopefully forms a useful check for them to ensure their
// predicted form actually matches what was intended rather than
// an onerous additional requirement.
d_poc = 0;
for (i = 0; i < ref->num_negative_pics; i++) {
d_poc -= ref->delta_poc_s0_minus1[i] + 1;
ref_delta_poc_s0[i] = d_poc;
}
d_poc = 0;
for (i = 0; i < ref->num_positive_pics; i++) {
d_poc += ref->delta_poc_s1_minus1[i] + 1;
ref_delta_poc_s1[i] = d_poc;
}
i = 0;
for (j = ref->num_positive_pics - 1; j >= 0; j--) {
d_poc = ref_delta_poc_s1[j] + delta_rps;
if (d_poc < 0 && current->use_delta_flag[ref->num_negative_pics + j]) {
delta_poc_s0[i] = d_poc;
used_by_curr_pic_s0[i++] =
current->used_by_curr_pic_flag[ref->num_negative_pics + j];
}
}
if (delta_rps < 0 && current->use_delta_flag[num_delta_pocs]) {
delta_poc_s0[i] = delta_rps;
used_by_curr_pic_s0[i++] =
current->used_by_curr_pic_flag[num_delta_pocs];
}
for (j = 0; j < ref->num_negative_pics; j++) {
d_poc = ref_delta_poc_s0[j] + delta_rps;
if (d_poc < 0 && current->use_delta_flag[j]) {
delta_poc_s0[i] = d_poc;
used_by_curr_pic_s0[i++] = current->used_by_curr_pic_flag[j];
}
}
infer(num_negative_pics, i);
for (i = 0; i < current->num_negative_pics; i++) {
infer(delta_poc_s0_minus1[i],
-(delta_poc_s0[i] - (i == 0 ? 0 : delta_poc_s0[i - 1])) - 1);
infer(used_by_curr_pic_s0_flag[i], used_by_curr_pic_s0[i]);
}
i = 0;
for (j = ref->num_negative_pics - 1; j >= 0; j--) {
d_poc = ref_delta_poc_s0[j] + delta_rps;
if (d_poc > 0 && current->use_delta_flag[j]) {
delta_poc_s1[i] = d_poc;
used_by_curr_pic_s1[i++] = current->used_by_curr_pic_flag[j];
}
}
if (delta_rps > 0 && current->use_delta_flag[num_delta_pocs]) {
delta_poc_s1[i] = delta_rps;
used_by_curr_pic_s1[i++] =
current->used_by_curr_pic_flag[num_delta_pocs];
}
for (j = 0; j < ref->num_positive_pics; j++) {
d_poc = ref_delta_poc_s1[j] + delta_rps;
if (d_poc > 0 && current->use_delta_flag[ref->num_negative_pics + j]) {
delta_poc_s1[i] = d_poc;
used_by_curr_pic_s1[i++] =
current->used_by_curr_pic_flag[ref->num_negative_pics + j];
}
}
infer(num_positive_pics, i);
for (i = 0; i < current->num_positive_pics; i++) {
infer(delta_poc_s1_minus1[i],
delta_poc_s1[i] - (i == 0 ? 0 : delta_poc_s1[i - 1]) - 1);
infer(used_by_curr_pic_s1_flag[i], used_by_curr_pic_s1[i]);
}
} else {
ue(num_negative_pics, 0, 15);
ue(num_positive_pics, 0, 15 - current->num_negative_pics);
for (i = 0; i < current->num_negative_pics; i++) {
ue(delta_poc_s0_minus1[i], 0, INT16_MAX);
flag(used_by_curr_pic_s0_flag[i]);
}
for (i = 0; i < current->num_positive_pics; i++) {
ue(delta_poc_s1_minus1[i], 0, INT16_MAX);
flag(used_by_curr_pic_s1_flag[i]);
}
}
return 0;
}
static int FUNC(scaling_list_data)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawScalingList *current)
{
int sizeId, matrixId;
int err, n, i;
for (sizeId = 0; sizeId < 4; sizeId++) {
for (matrixId = 0; matrixId < 6; matrixId += (sizeId == 3 ? 3 : 1)) {
flag(scaling_list_pred_mode_flag[sizeId][matrixId]);
if (!current->scaling_list_pred_mode_flag[sizeId][matrixId]) {
ue(scaling_list_pred_matrix_id_delta[sizeId][matrixId],
0, sizeId == 3 ? matrixId / 3 : matrixId);
} else {
n = FFMIN(64, 1 << (4 + (sizeId << 1)));
if (sizeId > 1)
se(scaling_list_dc_coef_minus8[sizeId - 2][matrixId], -7, +247);
for (i = 0; i < n; i++) {
xse(scaling_list_delta_coeff,
current->scaling_list_delta_coeff[sizeId][matrixId][i],
-128, +127);
}
}
}
}
return 0;
}
static int FUNC(sps_range_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
int err;
flag(transform_skip_rotation_enabled_flag);
flag(transform_skip_context_enabled_flag);
flag(implicit_rdpcm_enabled_flag);
flag(explicit_rdpcm_enabled_flag);
flag(extended_precision_processing_flag);
flag(intra_smoothing_disabled_flag);
flag(high_precision_offsets_enabled_flag);
flag(persistent_rice_adaptation_enabled_flag);
flag(cabac_bypass_alignment_enabled_flag);
return 0;
}
static int FUNC(sps_scc_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
int err, comp, i;
flag(sps_curr_pic_ref_enabled_flag);
flag(palette_mode_enabled_flag);
if (current->palette_mode_enabled_flag) {
ue(palette_max_size, 0, 64);
ue(delta_palette_max_predictor_size, 0, 128);
flag(sps_palette_predictor_initializer_present_flag);
if (current->sps_palette_predictor_initializer_present_flag) {
ue(sps_num_palette_predictor_initializer_minus1, 0, 128);
for (comp = 0; comp < (current->chroma_format_idc ? 3 : 1); comp++) {
int bit_depth = comp == 0 ? current->bit_depth_luma_minus8 + 8
: current->bit_depth_chroma_minus8 + 8;
for (i = 0; i <= current->sps_num_palette_predictor_initializer_minus1; i++)
u(bit_depth, sps_palette_predictor_initializers[comp][i],
0, (1 << bit_depth) - 1);
}
}
}
u(2, motion_vector_resolution_control_idc, 0, 2);
flag(intra_boundary_filtering_disable_flag);
return 0;
}
static int FUNC(sps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawVPS *vps;
int err, i;
unsigned int min_cb_log2_size_y, ctb_log2_size_y,
min_cb_size_y, min_tb_log2_size_y;
HEADER("Sequence Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_SPS));
u(4, sps_video_parameter_set_id, 0, 15);
h265->active_vps = vps = h265->vps[current->sps_video_parameter_set_id];
u(3, sps_max_sub_layers_minus1, 0, HEVC_MAX_SUB_LAYERS - 1);
flag(sps_temporal_id_nesting_flag);
if (vps) {
if (vps->vps_max_sub_layers_minus1 > current->sps_max_sub_layers_minus1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"sps_max_sub_layers_minus1 (%d) must be less than or equal to "
"vps_max_sub_layers_minus1 (%d).\n",
vps->vps_max_sub_layers_minus1,
current->sps_max_sub_layers_minus1);
return AVERROR_INVALIDDATA;
}
if (vps->vps_temporal_id_nesting_flag &&
!current->sps_temporal_id_nesting_flag) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"sps_temporal_id_nesting_flag must be 1 if "
"vps_temporal_id_nesting_flag is 1.\n");
return AVERROR_INVALIDDATA;
}
}
CHECK(FUNC(profile_tier_level)(ctx, rw, &current->profile_tier_level,
1, current->sps_max_sub_layers_minus1));
ue(sps_seq_parameter_set_id, 0, 15);
ue(chroma_format_idc, 0, 3);
if (current->chroma_format_idc == 3)
flag(separate_colour_plane_flag);
else
infer(separate_colour_plane_flag, 0);
ue(pic_width_in_luma_samples, 1, HEVC_MAX_WIDTH);
ue(pic_height_in_luma_samples, 1, HEVC_MAX_HEIGHT);
flag(conformance_window_flag);
if (current->conformance_window_flag) {
ue(conf_win_left_offset, 0, current->pic_width_in_luma_samples);
ue(conf_win_right_offset, 0, current->pic_width_in_luma_samples);
ue(conf_win_top_offset, 0, current->pic_height_in_luma_samples);
ue(conf_win_bottom_offset, 0, current->pic_height_in_luma_samples);
} else {
infer(conf_win_left_offset, 0);
infer(conf_win_right_offset, 0);
infer(conf_win_top_offset, 0);
infer(conf_win_bottom_offset, 0);
}
ue(bit_depth_luma_minus8, 0, 8);
ue(bit_depth_chroma_minus8, 0, 8);
ue(log2_max_pic_order_cnt_lsb_minus4, 0, 12);
flag(sps_sub_layer_ordering_info_present_flag);
for (i = (current->sps_sub_layer_ordering_info_present_flag ?
0 : current->sps_max_sub_layers_minus1);
i <= current->sps_max_sub_layers_minus1; i++) {
ue(sps_max_dec_pic_buffering_minus1[i], 0, HEVC_MAX_DPB_SIZE - 1);
ue(sps_max_num_reorder_pics[i], 0, current->sps_max_dec_pic_buffering_minus1[i]);
ue(sps_max_latency_increase_plus1[i], 0, UINT32_MAX - 1);
}
if (!current->sps_sub_layer_ordering_info_present_flag) {
for (i = 0; i < current->sps_max_sub_layers_minus1; i++) {
infer(sps_max_dec_pic_buffering_minus1[i],
current->sps_max_dec_pic_buffering_minus1[current->sps_max_sub_layers_minus1]);
infer(sps_max_num_reorder_pics[i],
current->sps_max_num_reorder_pics[current->sps_max_sub_layers_minus1]);
infer(sps_max_latency_increase_plus1[i],
current->sps_max_latency_increase_plus1[current->sps_max_sub_layers_minus1]);
}
}
ue(log2_min_luma_coding_block_size_minus3, 0, 3);
min_cb_log2_size_y = current->log2_min_luma_coding_block_size_minus3 + 3;
ue(log2_diff_max_min_luma_coding_block_size, 0, 3);
ctb_log2_size_y = min_cb_log2_size_y +
current->log2_diff_max_min_luma_coding_block_size;
min_cb_size_y = 1 << min_cb_log2_size_y;
if (current->pic_width_in_luma_samples % min_cb_size_y ||
current->pic_height_in_luma_samples % min_cb_size_y) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid dimensions: %ux%u not divisible "
"by MinCbSizeY = %u.\n", current->pic_width_in_luma_samples,
current->pic_height_in_luma_samples, min_cb_size_y);
return AVERROR_INVALIDDATA;
}
ue(log2_min_luma_transform_block_size_minus2, 0, min_cb_log2_size_y - 3);
min_tb_log2_size_y = current->log2_min_luma_transform_block_size_minus2 + 2;
ue(log2_diff_max_min_luma_transform_block_size,
0, FFMIN(ctb_log2_size_y, 5) - min_tb_log2_size_y);
ue(max_transform_hierarchy_depth_inter,
0, ctb_log2_size_y - min_tb_log2_size_y);
ue(max_transform_hierarchy_depth_intra,
0, ctb_log2_size_y - min_tb_log2_size_y);
flag(scaling_list_enabled_flag);
if (current->scaling_list_enabled_flag) {
flag(sps_scaling_list_data_present_flag);
if (current->sps_scaling_list_data_present_flag)
CHECK(FUNC(scaling_list_data)(ctx, rw, &current->scaling_list));
} else {
infer(sps_scaling_list_data_present_flag, 0);
}
flag(amp_enabled_flag);
flag(sample_adaptive_offset_enabled_flag);
flag(pcm_enabled_flag);
if (current->pcm_enabled_flag) {
u(4, pcm_sample_bit_depth_luma_minus1,
0, current->bit_depth_luma_minus8 + 8 - 1);
u(4, pcm_sample_bit_depth_chroma_minus1,
0, current->bit_depth_chroma_minus8 + 8 - 1);
ue(log2_min_pcm_luma_coding_block_size_minus3,
FFMIN(min_cb_log2_size_y, 5) - 3, FFMIN(ctb_log2_size_y, 5) - 3);
ue(log2_diff_max_min_pcm_luma_coding_block_size,
0, FFMIN(ctb_log2_size_y, 5) - (current->log2_min_pcm_luma_coding_block_size_minus3 + 3));
flag(pcm_loop_filter_disabled_flag);
}
ue(num_short_term_ref_pic_sets, 0, HEVC_MAX_SHORT_TERM_REF_PIC_SETS);
for (i = 0; i < current->num_short_term_ref_pic_sets; i++)
CHECK(FUNC(st_ref_pic_set)(ctx, rw, &current->st_ref_pic_set[i], i, current));
flag(long_term_ref_pics_present_flag);
if (current->long_term_ref_pics_present_flag) {
ue(num_long_term_ref_pics_sps, 0, HEVC_MAX_LONG_TERM_REF_PICS);
for (i = 0; i < current->num_long_term_ref_pics_sps; i++) {
u(current->log2_max_pic_order_cnt_lsb_minus4 + 4,
lt_ref_pic_poc_lsb_sps[i],
0, (1 << (current->log2_max_pic_order_cnt_lsb_minus4 + 4)) - 1);
flag(used_by_curr_pic_lt_sps_flag[i]);
}
}
flag(sps_temporal_mvp_enabled_flag);
flag(strong_intra_smoothing_enabled_flag);
flag(vui_parameters_present_flag);
if (current->vui_parameters_present_flag)
CHECK(FUNC(vui_parameters)(ctx, rw, &current->vui, current));
flag(sps_extension_present_flag);
if (current->sps_extension_present_flag) {
flag(sps_range_extension_flag);
flag(sps_multilayer_extension_flag);
flag(sps_3d_extension_flag);
flag(sps_scc_extension_flag);
u(4, sps_extension_4bits, 0, (1 << 4) - 1);
}
if (current->sps_range_extension_flag)
CHECK(FUNC(sps_range_extension)(ctx, rw, current));
if (current->sps_multilayer_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->sps_3d_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->sps_scc_extension_flag)
CHECK(FUNC(sps_scc_extension)(ctx, rw, current));
if (current->sps_extension_4bits)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(pps_range_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps = h265->active_sps;
int err, i;
if (current->transform_skip_enabled_flag)
ue(log2_max_transform_skip_block_size_minus2, 0, 4);
flag(cross_component_prediction_enabled_flag);
flag(chroma_qp_offset_list_enabled_flag);
if (current->chroma_qp_offset_list_enabled_flag) {
ue(diff_cu_chroma_qp_offset_depth,
0, sps->log2_diff_max_min_luma_coding_block_size);
ue(chroma_qp_offset_list_len_minus1, 0, 5);
for (i = 0; i <= current->chroma_qp_offset_list_len_minus1; i++) {
se(cb_qp_offset_list[i], -12, +12);
se(cr_qp_offset_list[i], -12, +12);
}
}
ue(log2_sao_offset_scale_luma, 0, FFMAX(0, sps->bit_depth_luma_minus8 - 2));
ue(log2_sao_offset_scale_chroma, 0, FFMAX(0, sps->bit_depth_chroma_minus8 - 2));
return 0;
}
static int FUNC(pps_scc_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
int err, comp, i;
flag(pps_curr_pic_ref_enabled_flag);
flag(residual_adaptive_colour_transform_enabled_flag);
if (current->residual_adaptive_colour_transform_enabled_flag) {
flag(pps_slice_act_qp_offsets_present_flag);
se(pps_act_y_qp_offset_plus5, -7, +17);
se(pps_act_cb_qp_offset_plus5, -7, +17);
se(pps_act_cr_qp_offset_plus3, -9, +15);
} else {
infer(pps_slice_act_qp_offsets_present_flag, 0);
infer(pps_act_y_qp_offset_plus5, 0);
infer(pps_act_cb_qp_offset_plus5, 0);
infer(pps_act_cr_qp_offset_plus3, 0);
}
flag(pps_palette_predictor_initializer_present_flag);
if (current->pps_palette_predictor_initializer_present_flag) {
ue(pps_num_palette_predictor_initializer, 0, 128);
if (current->pps_num_palette_predictor_initializer > 0) {
flag(monochrome_palette_flag);
ue(luma_bit_depth_entry_minus8, 0, 8);
if (!current->monochrome_palette_flag)
ue(chroma_bit_depth_entry_minus8, 0, 8);
for (comp = 0; comp < (current->monochrome_palette_flag ? 1 : 3); comp++) {
int bit_depth = comp == 0 ? current->luma_bit_depth_entry_minus8 + 8
: current->chroma_bit_depth_entry_minus8 + 8;
for (i = 0; i < current->pps_num_palette_predictor_initializer; i++)
u(bit_depth, pps_palette_predictor_initializers[comp][i],
0, (1 << bit_depth) - 1);
}
}
}
return 0;
}
static int FUNC(pps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
int err, i;
HEADER("Picture Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_PPS));
ue(pps_pic_parameter_set_id, 0, 63);
ue(pps_seq_parameter_set_id, 0, 15);
sps = h265->sps[current->pps_seq_parameter_set_id];
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "SPS id %d not available.\n",
current->pps_seq_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_sps = sps;
flag(dependent_slice_segments_enabled_flag);
flag(output_flag_present_flag);
u(3, num_extra_slice_header_bits, 0, 7);
flag(sign_data_hiding_enabled_flag);
flag(cabac_init_present_flag);
ue(num_ref_idx_l0_default_active_minus1, 0, 14);
ue(num_ref_idx_l1_default_active_minus1, 0, 14);
se(init_qp_minus26, -(26 + 6 * sps->bit_depth_luma_minus8), +25);
flag(constrained_intra_pred_flag);
flag(transform_skip_enabled_flag);
flag(cu_qp_delta_enabled_flag);
if (current->cu_qp_delta_enabled_flag)
ue(diff_cu_qp_delta_depth,
0, sps->log2_diff_max_min_luma_coding_block_size);
else
infer(diff_cu_qp_delta_depth, 0);
se(pps_cb_qp_offset, -12, +12);
se(pps_cr_qp_offset, -12, +12);
flag(pps_slice_chroma_qp_offsets_present_flag);
flag(weighted_pred_flag);
flag(weighted_bipred_flag);
flag(transquant_bypass_enabled_flag);
flag(tiles_enabled_flag);
flag(entropy_coding_sync_enabled_flag);
if (current->tiles_enabled_flag) {
ue(num_tile_columns_minus1, 0, HEVC_MAX_TILE_COLUMNS);
ue(num_tile_rows_minus1, 0, HEVC_MAX_TILE_ROWS);
flag(uniform_spacing_flag);
if (!current->uniform_spacing_flag) {
for (i = 0; i < current->num_tile_columns_minus1; i++)
ue(column_width_minus1[i], 0, sps->pic_width_in_luma_samples);
for (i = 0; i < current->num_tile_rows_minus1; i++)
ue(row_height_minus1[i], 0, sps->pic_height_in_luma_samples);
}
flag(loop_filter_across_tiles_enabled_flag);
} else {
infer(num_tile_columns_minus1, 0);
infer(num_tile_rows_minus1, 0);
}
flag(pps_loop_filter_across_slices_enabled_flag);
flag(deblocking_filter_control_present_flag);
if (current->deblocking_filter_control_present_flag) {
flag(deblocking_filter_override_enabled_flag);
flag(pps_deblocking_filter_disabled_flag);
if (!current->pps_deblocking_filter_disabled_flag) {
se(pps_beta_offset_div2, -6, +6);
se(pps_tc_offset_div2, -6, +6);
} else {
infer(pps_beta_offset_div2, 0);
infer(pps_tc_offset_div2, 0);
}
} else {
infer(deblocking_filter_override_enabled_flag, 0);
infer(pps_deblocking_filter_disabled_flag, 0);
infer(pps_beta_offset_div2, 0);
infer(pps_tc_offset_div2, 0);
}
flag(pps_scaling_list_data_present_flag);
if (current->pps_scaling_list_data_present_flag)
CHECK(FUNC(scaling_list_data)(ctx, rw, &current->scaling_list));
flag(lists_modification_present_flag);
ue(log2_parallel_merge_level_minus2,
0, (sps->log2_min_luma_coding_block_size_minus3 + 3 +
sps->log2_diff_max_min_luma_coding_block_size - 2));
flag(slice_segment_header_extension_present_flag);
flag(pps_extension_present_flag);
if (current->pps_extension_present_flag) {
flag(pps_range_extension_flag);
flag(pps_multilayer_extension_flag);
flag(pps_3d_extension_flag);
flag(pps_scc_extension_flag);
u(4, pps_extension_4bits, 0, (1 << 4) - 1);
}
if (current->pps_range_extension_flag)
CHECK(FUNC(pps_range_extension)(ctx, rw, current));
if (current->pps_multilayer_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->pps_3d_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->pps_scc_extension_flag)
CHECK(FUNC(pps_scc_extension)(ctx, rw, current));
if (current->pps_extension_4bits)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(aud)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawAUD *current)
{
int err;
HEADER("Access Unit Delimiter");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_AUD));
u(3, pic_type, 0, 2);
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(ref_pic_lists_modification)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current,
unsigned int num_pic_total_curr)
{
unsigned int entry_size;
int err, i;
entry_size = av_log2(num_pic_total_curr - 1) + 1;
flag(ref_pic_list_modification_flag_l0);
if (current->ref_pic_list_modification_flag_l0) {
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++)
u(entry_size, list_entry_l0[i], 0, num_pic_total_curr - 1);
}
if (current->slice_type == HEVC_SLICE_B) {
flag(ref_pic_list_modification_flag_l1);
if (current->ref_pic_list_modification_flag_l1) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++)
u(entry_size, list_entry_l1[i], 0, num_pic_total_curr - 1);
}
}
return 0;
}
static int FUNC(pred_weight_table)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps = h265->active_sps;
int err, i, j;
int chroma = !sps->separate_colour_plane_flag &&
sps->chroma_format_idc != 0;
ue(luma_log2_weight_denom, 0, 7);
if (chroma)
se(delta_chroma_log2_weight_denom, -7, 7);
else
infer(delta_chroma_log2_weight_denom, 0);
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (1 /* is not same POC and same layer_id */)
flag(luma_weight_l0_flag[i]);
else
infer(luma_weight_l0_flag[i], 0);
}
if (chroma) {
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (1 /* is not same POC and same layer_id */)
flag(chroma_weight_l0_flag[i]);
else
infer(chroma_weight_l0_flag[i], 0);
}
}
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (current->luma_weight_l0_flag[i]) {
se(delta_luma_weight_l0[i], -128, +127);
se(luma_offset_l0[i],
-(1 << (sps->bit_depth_luma_minus8 + 8 - 1)),
+(1 << (sps->bit_depth_luma_minus8 + 8 - 1) - 1));
} else {
infer(delta_luma_weight_l0[i], 0);
infer(luma_offset_l0[i], 0);
}
if (current->chroma_weight_l0_flag[i]) {
for (j = 0; j < 2; j++) {
se(delta_chroma_weight_l0[i][j], -128, +127);
se(chroma_offset_l0[i][j],
-(4 << (sps->bit_depth_chroma_minus8 + 8 - 1)),
+(4 << (sps->bit_depth_chroma_minus8 + 8 - 1) - 1));
}
} else {
for (j = 0; j < 2; j++) {
infer(delta_chroma_weight_l0[i][j], 0);
infer(chroma_offset_l0[i][j], 0);
}
}
}
if (current->slice_type == HEVC_SLICE_B) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (1 /* RefPicList1[i] is not CurrPic, nor is it in a different layer */)
flag(luma_weight_l1_flag[i]);
else
infer(luma_weight_l1_flag[i], 0);
}
if (chroma) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (1 /* RefPicList1[i] is not CurrPic, nor is it in a different layer */)
flag(chroma_weight_l1_flag[i]);
else
infer(chroma_weight_l1_flag[i], 0);
}
}
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (current->luma_weight_l1_flag[i]) {
se(delta_luma_weight_l1[i], -128, +127);
se(luma_offset_l1[i],
- 1 << (sps->bit_depth_luma_minus8 + 8 - 1),
+ 1 << (sps->bit_depth_luma_minus8 + 8 - 1) - 1);
} else {
infer(delta_luma_weight_l1[i], 0);
infer(luma_offset_l1[i], 0);
}
if (current->chroma_weight_l1_flag[i]) {
for (j = 0; j < 2; j++) {
se(delta_chroma_weight_l1[i][j], -128, +127);
se(chroma_offset_l1[i][j],
- 4 << (sps->bit_depth_chroma_minus8 + 8 - 1),
+ 4 << (sps->bit_depth_chroma_minus8 + 8 - 1) - 1);
}
} else {
for (j = 0; j < 2; j++) {
infer(delta_chroma_weight_l1[i][j], 0);
infer(chroma_offset_l1[i][j], 0);
}
}
}
}
return 0;
}
static int FUNC(slice_segment_header)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
const H265RawPPS *pps;
unsigned int min_cb_log2_size_y, ctb_log2_size_y, ctb_size_y;
unsigned int pic_width_in_ctbs_y, pic_height_in_ctbs_y, pic_size_in_ctbs_y;
unsigned int num_pic_total_curr = 0;
int err, i;
HEADER("Slice Segment Header");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, -1));
flag(first_slice_segment_in_pic_flag);
if (current->nal_unit_header.nal_unit_type >= HEVC_NAL_BLA_W_LP &&
current->nal_unit_header.nal_unit_type <= HEVC_NAL_IRAP_VCL23)
flag(no_output_of_prior_pics_flag);
ue(slice_pic_parameter_set_id, 0, 63);
pps = h265->pps[current->slice_pic_parameter_set_id];
if (!pps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "PPS id %d not available.\n",
current->slice_pic_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_pps = pps;
sps = h265->sps[pps->pps_seq_parameter_set_id];
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "SPS id %d not available.\n",
pps->pps_seq_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_sps = sps;
min_cb_log2_size_y = sps->log2_min_luma_coding_block_size_minus3 + 3;
ctb_log2_size_y = min_cb_log2_size_y + sps->log2_diff_max_min_luma_coding_block_size;
ctb_size_y = 1 << ctb_log2_size_y;
pic_width_in_ctbs_y =
(sps->pic_width_in_luma_samples + ctb_size_y - 1) / ctb_size_y;
pic_height_in_ctbs_y =
(sps->pic_height_in_luma_samples + ctb_size_y - 1) / ctb_size_y;
pic_size_in_ctbs_y = pic_width_in_ctbs_y * pic_height_in_ctbs_y;
if (!current->first_slice_segment_in_pic_flag) {
unsigned int address_size = av_log2(pic_size_in_ctbs_y - 1) + 1;
if (pps->dependent_slice_segments_enabled_flag)
flag(dependent_slice_segment_flag);
else
infer(dependent_slice_segment_flag, 0);
u(address_size, slice_segment_address, 0, pic_size_in_ctbs_y - 1);
} else {
infer(dependent_slice_segment_flag, 0);
}
if (!current->dependent_slice_segment_flag) {
for (i = 0; i < pps->num_extra_slice_header_bits; i++)
flag(slice_reserved_flag[i]);
ue(slice_type, 0, 2);
if (pps->output_flag_present_flag)
flag(pic_output_flag);
if (sps->separate_colour_plane_flag)
u(2, colour_plane_id, 0, 2);
if (current->nal_unit_header.nal_unit_type != HEVC_NAL_IDR_W_RADL &&
current->nal_unit_header.nal_unit_type != HEVC_NAL_IDR_N_LP) {
const H265RawSTRefPicSet *rps;
u(sps->log2_max_pic_order_cnt_lsb_minus4 + 4, slice_pic_order_cnt_lsb,
0, (1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4)) - 1);
flag(short_term_ref_pic_set_sps_flag);
if (!current->short_term_ref_pic_set_sps_flag) {
CHECK(FUNC(st_ref_pic_set)(ctx, rw, &current->short_term_ref_pic_set,
sps->num_short_term_ref_pic_sets, sps));
rps = &current->short_term_ref_pic_set;
} else if (sps->num_short_term_ref_pic_sets > 1) {
unsigned int idx_size = av_log2(sps->num_short_term_ref_pic_sets - 1) + 1;
u(idx_size, short_term_ref_pic_set_idx,
0, sps->num_short_term_ref_pic_sets - 1);
rps = &sps->st_ref_pic_set[current->short_term_ref_pic_set_idx];
} else {
infer(short_term_ref_pic_set_idx, 0);
rps = &sps->st_ref_pic_set[0];
}
num_pic_total_curr = 0;
for (i = 0; i < rps->num_negative_pics; i++)
if (rps->used_by_curr_pic_s0_flag[i])
++num_pic_total_curr;
for (i = 0; i < rps->num_positive_pics; i++)
if (rps->used_by_curr_pic_s1_flag[i])
++num_pic_total_curr;
if (sps->long_term_ref_pics_present_flag) {
unsigned int idx_size;
if (sps->num_long_term_ref_pics_sps > 0) {
ue(num_long_term_sps, 0, sps->num_long_term_ref_pics_sps);
idx_size = av_log2(sps->num_long_term_ref_pics_sps - 1) + 1;
} else {
infer(num_long_term_sps, 0);
idx_size = 0;
}
ue(num_long_term_pics, 0, HEVC_MAX_LONG_TERM_REF_PICS);
for (i = 0; i < current->num_long_term_sps +
current->num_long_term_pics; i++) {
if (i < current->num_long_term_sps) {
if (sps->num_long_term_ref_pics_sps > 1)
u(idx_size, lt_idx_sps[i],
0, sps->num_long_term_ref_pics_sps - 1);
if (sps->used_by_curr_pic_lt_sps_flag[current->lt_idx_sps[i]])
++num_pic_total_curr;
} else {
u(sps->log2_max_pic_order_cnt_lsb_minus4 + 4, poc_lsb_lt[i],
0, (1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4)) - 1);
flag(used_by_curr_pic_lt_flag[i]);
if (current->used_by_curr_pic_lt_flag[i])
++num_pic_total_curr;
}
flag(delta_poc_msb_present_flag[i]);
if (current->delta_poc_msb_present_flag[i])
ue(delta_poc_msb_cycle_lt[i], 0, UINT32_MAX - 1);
else
infer(delta_poc_msb_cycle_lt[i], 0);
}
}
if (sps->sps_temporal_mvp_enabled_flag)
flag(slice_temporal_mvp_enabled_flag);
else
infer(slice_temporal_mvp_enabled_flag, 0);
if (pps->pps_curr_pic_ref_enabled_flag)
++num_pic_total_curr;
}
if (sps->sample_adaptive_offset_enabled_flag) {
flag(slice_sao_luma_flag);
if (!sps->separate_colour_plane_flag && sps->chroma_format_idc != 0)
flag(slice_sao_chroma_flag);
else
infer(slice_sao_chroma_flag, 0);
} else {
infer(slice_sao_luma_flag, 0);
infer(slice_sao_chroma_flag, 0);
}
if (current->slice_type == HEVC_SLICE_P ||
current->slice_type == HEVC_SLICE_B) {
flag(num_ref_idx_active_override_flag);
if (current->num_ref_idx_active_override_flag) {
ue(num_ref_idx_l0_active_minus1, 0, 14);
if (current->slice_type == HEVC_SLICE_B)
ue(num_ref_idx_l1_active_minus1, 0, 14);
else
infer(num_ref_idx_l1_active_minus1, pps->num_ref_idx_l1_default_active_minus1);
} else {
infer(num_ref_idx_l0_active_minus1, pps->num_ref_idx_l0_default_active_minus1);
infer(num_ref_idx_l1_active_minus1, pps->num_ref_idx_l1_default_active_minus1);
}
if (pps->lists_modification_present_flag && num_pic_total_curr > 1)
CHECK(FUNC(ref_pic_lists_modification)(ctx, rw, current,
num_pic_total_curr));
if (current->slice_type == HEVC_SLICE_B)
flag(mvd_l1_zero_flag);
if (pps->cabac_init_present_flag)
flag(cabac_init_flag);
else
infer(cabac_init_flag, 0);
if (current->slice_temporal_mvp_enabled_flag) {
if (current->slice_type == HEVC_SLICE_B)
flag(collocated_from_l0_flag);
else
infer(collocated_from_l0_flag, 1);
if (current->collocated_from_l0_flag) {
if (current->num_ref_idx_l0_active_minus1 > 0)
ue(collocated_ref_idx, 0, current->num_ref_idx_l0_active_minus1);
else
infer(collocated_ref_idx, 0);
} else {
if (current->num_ref_idx_l1_active_minus1 > 0)
ue(collocated_ref_idx, 0, current->num_ref_idx_l1_active_minus1);
else
infer(collocated_ref_idx, 0);
}
}
if ((pps->weighted_pred_flag && current->slice_type == HEVC_SLICE_P) ||
(pps->weighted_bipred_flag && current->slice_type == HEVC_SLICE_B))
CHECK(FUNC(pred_weight_table)(ctx, rw, current));
ue(five_minus_max_num_merge_cand, 0, 4);
if (sps->motion_vector_resolution_control_idc == 2)
flag(use_integer_mv_flag);
else
infer(use_integer_mv_flag, sps->motion_vector_resolution_control_idc);
}
se(slice_qp_delta,
- 6 * sps->bit_depth_luma_minus8 - (pps->init_qp_minus26 + 26),
+ 51 - (pps->init_qp_minus26 + 26));
if (pps->pps_slice_chroma_qp_offsets_present_flag) {
se(slice_cb_qp_offset, -12, +12);
se(slice_cr_qp_offset, -12, +12);
} else {
infer(slice_cb_qp_offset, 0);
infer(slice_cr_qp_offset, 0);
}
if (pps->pps_slice_act_qp_offsets_present_flag) {
se(slice_act_y_qp_offset,
-12 - (pps->pps_act_y_qp_offset_plus5 - 5),
+12 - (pps->pps_act_y_qp_offset_plus5 - 5));
se(slice_act_cb_qp_offset,
-12 - (pps->pps_act_cb_qp_offset_plus5 - 5),
+12 - (pps->pps_act_cb_qp_offset_plus5 - 5));
se(slice_act_cr_qp_offset,
-12 - (pps->pps_act_cr_qp_offset_plus3 - 3),
+12 - (pps->pps_act_cr_qp_offset_plus3 - 3));
} else {
infer(slice_act_y_qp_offset, 0);
infer(slice_act_cb_qp_offset, 0);
infer(slice_act_cr_qp_offset, 0);
}
if (pps->chroma_qp_offset_list_enabled_flag)
flag(cu_chroma_qp_offset_enabled_flag);
else
infer(cu_chroma_qp_offset_enabled_flag, 0);
if (pps->deblocking_filter_override_enabled_flag)
flag(deblocking_filter_override_flag);
else
infer(deblocking_filter_override_flag, 0);
if (current->deblocking_filter_override_flag) {
flag(slice_deblocking_filter_disabled_flag);
if (!current->slice_deblocking_filter_disabled_flag) {
se(slice_beta_offset_div2, -6, +6);
se(slice_tc_offset_div2, -6, +6);
} else {
infer(slice_beta_offset_div2, pps->pps_beta_offset_div2);
infer(slice_tc_offset_div2, pps->pps_tc_offset_div2);
}
} else {
infer(slice_deblocking_filter_disabled_flag,
pps->pps_deblocking_filter_disabled_flag);
infer(slice_beta_offset_div2, pps->pps_beta_offset_div2);
infer(slice_tc_offset_div2, pps->pps_tc_offset_div2);
}
if (pps->pps_loop_filter_across_slices_enabled_flag &&
(current->slice_sao_luma_flag || current->slice_sao_chroma_flag ||
!current->slice_deblocking_filter_disabled_flag))
flag(slice_loop_filter_across_slices_enabled_flag);
else
infer(slice_loop_filter_across_slices_enabled_flag,
pps->pps_loop_filter_across_slices_enabled_flag);
}
if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) {
unsigned int num_entry_point_offsets_limit;
if (!pps->tiles_enabled_flag && pps->entropy_coding_sync_enabled_flag)
num_entry_point_offsets_limit = pic_height_in_ctbs_y - 1;
else if (pps->tiles_enabled_flag && !pps->entropy_coding_sync_enabled_flag)
num_entry_point_offsets_limit =
(pps->num_tile_columns_minus1 + 1) * (pps->num_tile_rows_minus1 + 1);
else
num_entry_point_offsets_limit =
(pps->num_tile_columns_minus1 + 1) * pic_height_in_ctbs_y - 1;
ue(num_entry_point_offsets, 0, num_entry_point_offsets_limit);
if (current->num_entry_point_offsets > HEVC_MAX_ENTRY_POINT_OFFSETS) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Too many entry points: "
"%"PRIu16".\n", current->num_entry_point_offsets);
return AVERROR_PATCHWELCOME;
}
if (current->num_entry_point_offsets > 0) {
ue(offset_len_minus1, 0, 31);
for (i = 0; i < current->num_entry_point_offsets; i++)
u(current->offset_len_minus1 + 1, entry_point_offset_minus1[i],
0, (1 << (current->offset_len_minus1 + 1)) - 1);
}
}
if (pps->slice_segment_header_extension_present_flag) {
ue(slice_segment_header_extension_length, 0, 256);
for (i = 0; i < current->slice_segment_header_extension_length; i++)
u(8, slice_segment_header_extension_data_byte[i], 0x00, 0xff);
}
CHECK(FUNC(byte_alignment)(ctx, rw));
return 0;
}
......@@ -81,6 +81,7 @@ int ff_cbs_write_unsigned(CodedBitstreamContext *ctx, PutBitContext *pbc,
extern const CodedBitstreamType ff_cbs_type_h264;
extern const CodedBitstreamType ff_cbs_type_h265;
#endif /* AVCODEC_CBS_INTERNAL_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment