Commit 71e28c54 authored by Guo, Yejun's avatar Guo, Yejun

dnn/native: add native support for minimum

it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.minimum(0.7, x)
x2 = tf.maximum(x1, 0.4)
y = tf.identity(x2, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: 's avatarGuo, Yejun <yejun.guo@intel.com>
parent 607b85f0
......@@ -150,6 +150,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope
}
}
return 0;
case DMBO_MINIMUM:
if (params->input0_broadcast || params->input1_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = FFMIN(params->v, src[i]);
}
} else {
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
const float *src1 = input1->data;
for (int i = 0; i < dims_count; ++i) {
dst[i] = FFMIN(src[i], src1[i]);
}
}
return 0;
default:
return -1;
}
......
......@@ -35,6 +35,7 @@ typedef enum {
DMBO_ADD = 1,
DMBO_MUL = 2,
DMBO_REALDIV = 3,
DMBO_MINIMUM = 4,
DMBO_COUNT
} DNNMathBinaryOperation;
......
......@@ -71,7 +71,7 @@ class TFConverter:
self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}
......@@ -305,15 +305,10 @@ class TFConverter:
self.dump_mirrorpad_to_file(node, f)
elif node.op == 'Maximum':
self.dump_maximum_to_file(node, f)
elif node.op == 'Sub':
self.dump_mathbinary_to_file(node, f)
elif node.op == 'Add':
self.dump_mathbinary_to_file(node, f)
elif node.op == 'Mul':
self.dump_mathbinary_to_file(node, f)
elif node.op == 'RealDiv':
elif node.op in self.mathbin2code:
self.dump_mathbinary_to_file(node, f)
def dump_operands_to_file(self, f):
operands = sorted(self.name_operand_dict.values())
for operand in operands:
......
......@@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 1
# increase minor when we don't have to re-convert the model file
minor = 4
minor = 5
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment