Commit 6c44696b authored by foo86's avatar foo86 Committed by James Almer

avcodec/dca: add DTS Express (LBR) decoder

Signed-off-by: 's avatarJames Almer <jamrial@gmail.com>
parent fce75131
......@@ -31,6 +31,7 @@ version <next>:
- Duck TrueMotion 2.0 Real Time decoder
- Wideband Single-bit Data (WSD) demuxer
- VAAPI-accelerated H.264/HEVC/MJPEG encoding
- DTS Express (LBR) decoder
version 3.0:
- Common Encryption (CENC) MP4 encoding and decoding support
......
......@@ -232,7 +232,7 @@ OBJS-$(CONFIG_CPIA_DECODER) += cpia.o
OBJS-$(CONFIG_CSCD_DECODER) += cscd.o
OBJS-$(CONFIG_CYUV_DECODER) += cyuv.o
OBJS-$(CONFIG_DCA_DECODER) += dcadec.o dca.o dcadata.o dcahuff.o \
dca_core.o dca_exss.o dca_xll.o \
dca_core.o dca_exss.o dca_xll.o dca_lbr.o \
dcadsp.o dcadct.o synth_filter.o
OBJS-$(CONFIG_DCA_ENCODER) += dcaenc.o dca.o dcadata.o
OBJS-$(CONFIG_DDS_DECODER) += dds.o
......
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define UNCHECKED_BITSTREAM_READER 1
#define BITSTREAM_READER_LE
#include "libavutil/channel_layout.h"
#include "dcadec.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca_syncwords.h"
#include "bytestream.h"
#define AMP_MAX 56
enum LBRHeader {
LBR_HEADER_SYNC_ONLY = 1,
LBR_HEADER_DECODER_INIT = 2
};
enum LBRFlags {
LBR_FLAG_24_BIT = 0x01,
LBR_FLAG_LFE_PRESENT = 0x02,
LBR_FLAG_BAND_LIMIT_2_3 = 0x04,
LBR_FLAG_BAND_LIMIT_1_2 = 0x08,
LBR_FLAG_BAND_LIMIT_1_3 = 0x0c,
LBR_FLAG_BAND_LIMIT_1_4 = 0x10,
LBR_FLAG_BAND_LIMIT_1_8 = 0x18,
LBR_FLAG_BAND_LIMIT_NONE = 0x14,
LBR_FLAG_BAND_LIMIT_MASK = 0x1c,
LBR_FLAG_DMIX_STEREO = 0x20,
LBR_FLAG_DMIX_MULTI_CH = 0x40
};
enum LBRChunkTypes {
LBR_CHUNK_NULL = 0x00,
LBR_CHUNK_PAD = 0x01,
LBR_CHUNK_FRAME = 0x04,
LBR_CHUNK_FRAME_NO_CSUM = 0x06,
LBR_CHUNK_LFE = 0x0a,
LBR_CHUNK_ECS = 0x0b,
LBR_CHUNK_RESERVED_1 = 0x0c,
LBR_CHUNK_RESERVED_2 = 0x0d,
LBR_CHUNK_SCF = 0x0e,
LBR_CHUNK_TONAL = 0x10,
LBR_CHUNK_TONAL_GRP_1 = 0x11,
LBR_CHUNK_TONAL_GRP_2 = 0x12,
LBR_CHUNK_TONAL_GRP_3 = 0x13,
LBR_CHUNK_TONAL_GRP_4 = 0x14,
LBR_CHUNK_TONAL_GRP_5 = 0x15,
LBR_CHUNK_TONAL_SCF = 0x16,
LBR_CHUNK_TONAL_SCF_GRP_1 = 0x17,
LBR_CHUNK_TONAL_SCF_GRP_2 = 0x18,
LBR_CHUNK_TONAL_SCF_GRP_3 = 0x19,
LBR_CHUNK_TONAL_SCF_GRP_4 = 0x1a,
LBR_CHUNK_TONAL_SCF_GRP_5 = 0x1b,
LBR_CHUNK_RES_GRID_LR = 0x30,
LBR_CHUNK_RES_GRID_LR_LAST = 0x3f,
LBR_CHUNK_RES_GRID_HR = 0x40,
LBR_CHUNK_RES_GRID_HR_LAST = 0x4f,
LBR_CHUNK_RES_TS_1 = 0x50,
LBR_CHUNK_RES_TS_1_LAST = 0x5f,
LBR_CHUNK_RES_TS_2 = 0x60,
LBR_CHUNK_RES_TS_2_LAST = 0x6f,
LBR_CHUNK_EXTENSION = 0x7f
};
typedef struct LBRChunk {
int id, len;
const uint8_t *data;
} LBRChunk;
static const int8_t channel_reorder_nolfe[7][5] = {
{ 0, -1, -1, -1, -1 }, // C
{ 0, 1, -1, -1, -1 }, // LR
{ 0, 1, 2, -1, -1 }, // LR C
{ 0, 1, -1, -1, -1 }, // LsRs
{ 1, 2, 0, -1, -1 }, // LsRs C
{ 0, 1, 2, 3, -1 }, // LR LsRs
{ 0, 1, 3, 4, 2 }, // LR LsRs C
};
static const int8_t channel_reorder_lfe[7][5] = {
{ 0, -1, -1, -1, -1 }, // C
{ 0, 1, -1, -1, -1 }, // LR
{ 0, 1, 2, -1, -1 }, // LR C
{ 1, 2, -1, -1, -1 }, // LsRs
{ 2, 3, 0, -1, -1 }, // LsRs C
{ 0, 1, 3, 4, -1 }, // LR LsRs
{ 0, 1, 4, 5, 2 }, // LR LsRs C
};
static const uint8_t lfe_index[7] = {
1, 2, 3, 0, 1, 2, 3
};
static const uint8_t channel_counts[7] = {
1, 2, 3, 2, 3, 4, 5
};
static const uint16_t channel_layouts[7] = {
AV_CH_LAYOUT_MONO,
AV_CH_LAYOUT_STEREO,
AV_CH_LAYOUT_SURROUND,
AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
AV_CH_LAYOUT_2_2,
AV_CH_LAYOUT_5POINT0
};
static float cos_tab[256];
static float lpc_tab[16];
static av_cold void init_tables(void)
{
static int initialized;
int i;
if (initialized)
return;
for (i = 0; i < 256; i++)
cos_tab[i] = cos(M_PI * i / 128);
for (i = 0; i < 16; i++)
lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15)));
initialized = 1;
}
static int parse_lfe_24(DCALbrDecoder *s)
{
int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1;
int i, ps, si, code, step_i;
float step, value, delta;
ps = get_bits(&s->gb, 24);
si = ps >> 23;
value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff);
step_i = get_bits(&s->gb, 8);
if (step_i > step_max) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
return -1;
}
step = ff_dca_lfe_step_size_24[step_i];
for (i = 0; i < 64; i++) {
code = get_bits(&s->gb, 6);
delta = step * 0.03125f;
if (code & 16)
delta += step;
if (code & 8)
delta += step * 0.5f;
if (code & 4)
delta += step * 0.25f;
if (code & 2)
delta += step * 0.125f;
if (code & 1)
delta += step * 0.0625f;
if (code & 32) {
value -= delta;
if (value < -3.0f)
value = -3.0f;
} else {
value += delta;
if (value > 3.0f)
value = 3.0f;
}
step_i += ff_dca_lfe_delta_index_24[code & 31];
step_i = av_clip(step_i, 0, step_max);
step = ff_dca_lfe_step_size_24[step_i];
s->lfe_data[i] = value * s->lfe_scale;
}
return 0;
}
static int parse_lfe_16(DCALbrDecoder *s)
{
int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1;
int i, ps, si, code, step_i;
float step, value, delta;
ps = get_bits(&s->gb, 16);
si = ps >> 15;
value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff);
step_i = get_bits(&s->gb, 8);
if (step_i > step_max) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
return -1;
}
step = ff_dca_lfe_step_size_16[step_i];
for (i = 0; i < 64; i++) {
code = get_bits(&s->gb, 4);
delta = step * 0.125f;
if (code & 4)
delta += step;
if (code & 2)
delta += step * 0.5f;
if (code & 1)
delta += step * 0.25f;
if (code & 8) {
value -= delta;
if (value < -3.0f)
value = -3.0f;
} else {
value += delta;
if (value > 3.0f)
value = 3.0f;
}
step_i += ff_dca_lfe_delta_index_16[code & 7];
step_i = av_clip(step_i, 0, step_max);
step = ff_dca_lfe_step_size_16[step_i];
s->lfe_data[i] = value * s->lfe_scale;
}
return 0;
}
static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk)
{
if (!(s->flags & LBR_FLAG_LFE_PRESENT))
return 0;
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
// Determine bit depth from chunk size
if (chunk->len >= 52)
return parse_lfe_24(s);
if (chunk->len >= 35)
return parse_lfe_16(s);
av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n");
return -1;
}
static inline int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth)
{
int v = get_vlc2(s, vlc->table, vlc->bits, max_depth);
if (v > 0)
return v - 1;
// Rare value
return get_bits(s, get_bits(s, 3) + 1);
}
static int parse_tonal(DCALbrDecoder *s, int group)
{
unsigned int amp[DCA_LBR_CHANNELS_TOTAL];
unsigned int phs[DCA_LBR_CHANNELS_TOTAL];
unsigned int diff, main_amp, shift;
int sf, sf_idx, ch, main_ch, freq;
int ch_nbits = av_ceil_log2(s->nchannels_total);
// Parse subframes for this group
for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) {
sf_idx = ((s->framenum << group) + sf) & 31;
s->tonal_bounds[group][sf_idx][0] = s->ntones;
// Parse tones for this subframe
for (freq = 1;; freq++) {
if (get_bits_left(&s->gb) < 1) {
av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n");
return -1;
}
diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], 2);
if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n");
return -1;
}
diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff];
if (diff <= 1)
break; // End of subframe
freq += diff - 2;
if (freq >> (5 - group) > s->nsubbands * 4 - 5) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n");
return -1;
}
// Main channel
main_ch = get_bitsz(&s->gb, ch_nbits);
main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, 2)
+ s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]]
+ s->limited_range - 2;
amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0;
phs[main_ch] = get_bits(&s->gb, 3);
// Secondary channels
for (ch = 0; ch < s->nchannels_total; ch++) {
if (ch == main_ch)
continue;
if (get_bits1(&s->gb)) {
amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, 1);
phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph, 1);
} else {
amp[ch] = 0;
phs[ch] = 0;
}
}
if (amp[main_ch]) {
// Allocate new tone
DCALbrTone *t = &s->tones[s->ntones];
s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1);
t->x_freq = freq >> (5 - group);
t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group;
t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4;
shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)]
- ((t->ph_rot << (5 - group)) - t->ph_rot);
for (ch = 0; ch < s->nchannels; ch++) {
t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0;
t->phs[ch] = 128 - phs[ch] * 32 + shift;
}
}
}
s->tonal_bounds[group][sf_idx][1] = s->ntones;
}
return 0;
}
static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk)
{
int sb, group;
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
// Scale factors
if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) {
if (get_bits_left(&s->gb) < 36) {
av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n");
return -1;
}
for (sb = 0; sb < 6; sb++)
s->tonal_scf[sb] = get_bits(&s->gb, 6);
}
// Tonal groups
if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF)
for (group = 0; group < 5; group++)
if (parse_tonal(s, group) < 0)
return -1;
return 0;
}
static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk)
{
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
return parse_tonal(s, chunk->id);
}
/**
* Check point to ensure that enough bits are left. Aborts decoding
* by skipping to the end of chunk otherwise.
*/
static int ensure_bits(GetBitContext *s, int n)
{
int left = get_bits_left(s);
if (left < 0)
return -1;
if (left < n) {
skip_bits_long(s, left);
return 1;
}
return 0;
}
static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf)
{
int i, sf, prev, next, dist;
// Truncated scale factors remain zero
if (ensure_bits(&s->gb, 20))
return 0;
// Initial scale factor
prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, 2);
for (sf = 0; sf < 7; sf += dist) {
scf[sf] = prev; // Store previous value
if (ensure_bits(&s->gb, 20))
return 0;
// Interpolation distance
dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, 1) + 1;
if (dist > 7 - sf) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n");
return -1;
}
if (ensure_bits(&s->gb, 20))
return 0;
// Final interpolation point
next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, 2);
if (next & 1)
next = prev + ((next + 1) >> 1);
else
next = prev - ( next >> 1);
// Interpolate
switch (dist) {
case 2:
if (next > prev)
scf[sf + 1] = prev + ((next - prev) >> 1);
else
scf[sf + 1] = prev - ((prev - next) >> 1);
break;
case 4:
if (next > prev) {
scf[sf + 1] = prev + ( (next - prev) >> 2);
scf[sf + 2] = prev + ( (next - prev) >> 1);
scf[sf + 3] = prev + (((next - prev) * 3) >> 2);
} else {
scf[sf + 1] = prev - ( (prev - next) >> 2);
scf[sf + 2] = prev - ( (prev - next) >> 1);
scf[sf + 3] = prev - (((prev - next) * 3) >> 2);
}
break;
default:
for (i = 1; i < dist; i++)
scf[sf + i] = prev + (next - prev) * i / dist;
break;
}
prev = next;
}
scf[sf] = next; // Store final value
return 0;
}
static int parse_st_code(GetBitContext *s, int min_v)
{
unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, 2) + min_v;
if (v & 1)
v = 16 + (v >> 1);
else
v = 16 - (v >> 1);
if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff))
v = 16;
return v;
}
static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
int ch, sb, sf, nsubbands;
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
// Scale factors
nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
for (sb = 2; sb < nsubbands; sb++) {
if (parse_scale_factors(s, s->grid_1_scf[ch1][sb]) < 0)
return -1;
if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband
&& parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
return -1;
}
if (get_bits_left(&s->gb) < 1)
return 0; // Should not happen, but a sample exists that proves otherwise
// Average values for third grid
for (sb = 0; sb < s->nsubbands - 4; sb++) {
s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
if (ch1 != ch2) {
if (sb + 4 < s->min_mono_subband)
s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
else
s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb];
}
}
if (get_bits_left(&s->gb) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n");
return -1;
}
// Stereo image for partial mono mode
if (ch1 != ch2) {
int min_v[2];
if (ensure_bits(&s->gb, 8))
return 0;
min_v[0] = get_bits(&s->gb, 4);
min_v[1] = get_bits(&s->gb, 4);
nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4;
for (sb = 0; sb < nsubbands; sb++)
for (ch = ch1; ch <= ch2; ch++)
for (sf = 1; sf <= 4; sf++)
s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]);
if (get_bits_left(&s->gb) >= 0)
s->part_stereo_pres |= 1 << ch1;
}
// Low resolution spatial information is not decoded
return 0;
}
static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2)
{
int sb, nsubbands;
// Scale factors
nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
for (sb = 2; sb < nsubbands; sb++) {
if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband
&& parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
return -1;
}
// Average values for third grid
for (sb = 0; sb < s->nsubbands - 4; sb++) {
if (sb + 4 >= s->min_mono_subband) {
if (ensure_bits(&s->gb, 20))
return 0;
s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
}
}
return 0;
}
static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag)
{
int i, ch;
for (ch = ch1; ch <= ch2; ch++) {
if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag)
continue;
if (s->grid_3_pres[ch] & (1U << sb))
continue; // Already parsed
for (i = 0; i < 8; i++) {
if (ensure_bits(&s->gb, 20))
return;
s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, 2) - 16;
}
// Flag scale factors for this subband parsed
s->grid_3_pres[ch] |= 1U << sb;
}
}
static float lbr_rand(DCALbrDecoder *s, int sb)
{
s->lbr_rand = 1103515245U * s->lbr_rand + 12345U;
return s->lbr_rand * s->sb_scf[sb];
}
/**
* Parse time samples for one subband, filling truncated samples with randomness
*/
static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag)
{
float *samples = s->time_samples[ch][sb];
int i, j, code, nblocks, coding_method;
if (ensure_bits(&s->gb, 20))
return; // Too few bits left
coding_method = get_bits1(&s->gb);
switch (quant_level) {
case 1:
nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8);
for (i = 0; i < nblocks; i++, samples += 8) {
code = get_bits(&s->gb, 8);
for (j = 0; j < 8; j++)
samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1];
}
i = nblocks * 8;
break;
case 2:
if (coding_method) {
for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) {
if (get_bits1(&s->gb))
samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)];
else
samples[i] = 0;
}
} else {
nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5);
for (i = 0; i < nblocks; i++, samples += 5) {
code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)];
for (j = 0; j < 5; j++)
samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3];
}
i = nblocks * 5;
}
break;
case 3:
nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3);
for (i = 0; i < nblocks; i++, samples += 3) {
code = get_bits(&s->gb, 7);
for (j = 0; j < 3; j++)
samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]];
}
i = nblocks * 3;
break;
case 4:
for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++)
samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)];
break;
case 5:
nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES);
for (i = 0; i < nblocks; i++)
samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)];
break;
default:
av_assert0(0);
}
if (flag && get_bits_left(&s->gb) < 20)
return; // Skip incomplete mono subband
for (; i < DCA_LBR_TIME_SAMPLES; i++)
s->time_samples[ch][sb][i] = lbr_rand(s, sb);
s->ch_pres[ch] |= 1U << sb;
}
static int parse_ts(DCALbrDecoder *s, int ch1, int ch2,
int start_sb, int end_sb, int flag)
{
int sb, sb_g3, sb_reorder, quant_level;
for (sb = start_sb; sb < end_sb; sb++) {
// Subband number before reordering
if (sb < 6) {
sb_reorder = sb;
} else if (flag && sb < s->max_mono_subband) {
sb_reorder = s->sb_indices[sb];
} else {
if (ensure_bits(&s->gb, 28))
break;
sb_reorder = get_bits(&s->gb, s->limited_range + 3);
if (sb_reorder < 6)
sb_reorder = 6;
s->sb_indices[sb] = sb_reorder;
}
if (sb_reorder >= s->nsubbands)
return -1;
// Third grid scale factors
if (sb == 12) {
for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++)
parse_grid_3(s, ch1, ch2, sb_g3, flag);
} else if (sb < 12 && sb_reorder >= 4) {
parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag);
}
// Secondary channel flags
if (ch1 != ch2) {
if (ensure_bits(&s->gb, 20))
break;
if (!flag || sb_reorder >= s->max_mono_subband)
s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
if (flag && sb_reorder >= s->min_mono_subband)
s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
}
quant_level = s->quant_levels[ch1 / 2][sb];
if (!quant_level)
return -1;
// Time samples for one or both channels
if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) {
if (!flag)
parse_ch(s, ch1, sb_reorder, quant_level, 0);
else if (ch1 != ch2)
parse_ch(s, ch2, sb_reorder, quant_level, 1);
} else {
parse_ch(s, ch1, sb_reorder, quant_level, 0);
if (ch1 != ch2)
parse_ch(s, ch2, sb_reorder, quant_level, 0);
}
}
return 0;
}
/**
* Convert from reflection coefficients to direct form coefficients
*/
static void convert_lpc(float *coeff, const int *codes)
{
int i, j;
for (i = 0; i < 8; i++) {
float rc = lpc_tab[codes[i]];
for (j = 0; j < (i + 1) / 2; j++) {
float tmp1 = coeff[ j ];
float tmp2 = coeff[i - j - 1];
coeff[ j ] = tmp1 + rc * tmp2;
coeff[i - j - 1] = tmp2 + rc * tmp1;
}
coeff[i] = rc;
}
}
static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb)
{
int f = s->framenum & 1;
int i, sb, ch, codes[16];
// First two subbands have two sets of coefficients, third subband has one
for (sb = start_sb; sb < end_sb; sb++) {
int ncodes = 8 * (1 + (sb < 2));
for (ch = ch1; ch <= ch2; ch++) {
if (ensure_bits(&s->gb, 4 * ncodes))
return 0;
for (i = 0; i < ncodes; i++)
codes[i] = get_bits(&s->gb, 4);
for (i = 0; i < ncodes / 8; i++)
convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]);
}
}
return 0;
}
static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
int quant_levels[DCA_LBR_SUBBANDS];
int sb, ch, ol, st, max_sb, profile;
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
// Quantizer profile
profile = get_bits(&s->gb, 8);
// Overall level
ol = (profile >> 3) & 7;
// Steepness
st = profile >> 6;
// Max energy subband
max_sb = profile & 7;
// Calculate quantization levels
for (sb = 0; sb < s->nsubbands; sb++) {
int f = sb * s->limited_rate / s->nsubbands;
int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol;
if (a <= 95)
quant_levels[sb] = 1;
else if (a <= 140)
quant_levels[sb] = 2;
else if (a <= 180)
quant_levels[sb] = 3;
else if (a <= 230)
quant_levels[sb] = 4;
else
quant_levels[sb] = 5;
}
// Reorder quantization levels for lower subbands
for (sb = 0; sb < 8; sb++)
s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]];
for (; sb < s->nsubbands; sb++)
s->quant_levels[ch1 / 2][sb] = quant_levels[sb];
// LPC for the first two subbands
if (parse_lpc(s, ch1, ch2, 0, 2) < 0)
return -1;
// Time-samples for the first two subbands of main channel
if (parse_ts(s, ch1, ch2, 0, 2, 0) < 0)
return -1;
// First two bands of the first grid
for (sb = 0; sb < 2; sb++)
for (ch = ch1; ch <= ch2; ch++)
if (parse_scale_factors(s, s->grid_1_scf[ch][sb]) < 0)
return -1;
return 0;
}
static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2,
int start_sb, int end_sb, int flag)
{
int i, j, sb, ch, nsubbands;
nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1;
if (end_sb > nsubbands)
end_sb = nsubbands;
for (sb = start_sb; sb < end_sb; sb++) {
for (ch = ch1; ch <= ch2; ch++) {
uint8_t *g2_scf = s->grid_2_scf[ch][sb];
if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) {
if (!flag)
memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64);
continue;
}
// Scale factors in groups of 8
for (i = 0; i < 8; i++, g2_scf += 8) {
if (get_bits_left(&s->gb) < 1) {
memset(g2_scf, 0, 64 - i * 8);
break;
}
// Bit indicating if whole group has zero values
if (get_bits1(&s->gb)) {
for (j = 0; j < 8; j++) {
if (ensure_bits(&s->gb, 20))
break;
g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, 2);
}
} else {
memset(g2_scf, 0, 8);
}
}
}
}
return 0;
}
static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
if (parse_lpc(s, ch1, ch2, 2, 3) < 0)
return -1;
if (parse_ts(s, ch1, ch2, 2, 4, 0) < 0)
return -1;
if (parse_grid_2(s, ch1, ch2, 0, 1, 0) < 0)
return -1;
if (parse_ts(s, ch1, ch2, 4, 6, 0) < 0)
return -1;
return 0;
}
static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
{
if (!chunk->len)
return 0;
if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
return -1;
if (parse_grid_2(s, ch1, ch2, 1, 3, 0) < 0)
return -1;
if (parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0) < 0)
return -1;
if (ch1 != ch2) {
if (parse_grid_1_sec_ch(s, ch2) < 0)
return -1;
if (parse_grid_2(s, ch1, ch2, 0, 3, 1) < 0)
return -1;
}
if (parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1) < 0)
return -1;
return 0;
}
static int init_sample_rate(DCALbrDecoder *s)
{
double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range));
int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total;
ff_mdct_end(&s->imdct);
if (ff_mdct_init(&s->imdct, s->freq_range + 6, 1, scale) < 0)
return -1;
for (i = 0; i < 32 << s->freq_range; i++)
s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)];
if (br_per_ch < 14000)
scale = 0.85;
else if (br_per_ch < 32000)
scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85;
else
scale = 1.0;
scale *= 1.0 / INT_MAX;
for (i = 0; i < s->nsubbands; i++) {
if (i < 2)
s->sb_scf[i] = 0; // The first two subbands are always zero
else if (i < 5)
s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale;
else
s->sb_scf[i] = 0.785 * scale;
}
s->lfe_scale = (16 << s->freq_range) * 0.0000078265894;
return 0;
}
static int alloc_sample_buffer(DCALbrDecoder *s)
{
// Reserve space for history and padding
int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2;
int nsamples = nchsamples * s->nchannels * s->nsubbands;
int ch, sb;
float *ptr;
// Reallocate time sample buffer
av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float));
if (!s->ts_buffer)
return -1;
ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY;
for (ch = 0; ch < s->nchannels; ch++) {
for (sb = 0; sb < s->nsubbands; sb++) {
s->time_samples[ch][sb] = ptr;
ptr += nchsamples;
}
}
return 0;
}
static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb)
{
int old_rate = s->sample_rate;
int old_band_limit = s->band_limit;
int old_nchannels = s->nchannels;
int version, bit_rate_hi;
unsigned int code;
// Sample rate of LBR audio
code = bytestream2_get_byte(gb);
if (code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n");
return AVERROR_INVALIDDATA;
}
s->sample_rate = ff_dca_sampling_freqs[code];
if (s->sample_rate > 48000) {
avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate);
return AVERROR_PATCHWELCOME;
}
// LBR speaker mask
s->ch_mask = bytestream2_get_le16(gb);
if (!(s->ch_mask & 0x7)) {
avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
return AVERROR_PATCHWELCOME;
}
if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) {
avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
s->warned |= 1;
}
// LBR bitstream version
version = bytestream2_get_le16(gb);
if ((version & 0xff00) != 0x0800) {
avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version);
return AVERROR_PATCHWELCOME;
}
// Flags for LBR decoder initialization
s->flags = bytestream2_get_byte(gb);
if (s->flags & LBR_FLAG_DMIX_MULTI_CH) {
avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix");
return AVERROR_PATCHWELCOME;
}
if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) {
if (!(s->warned & 2)) {
avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate);
s->warned |= 2;
}
s->flags &= ~LBR_FLAG_LFE_PRESENT;
}
// Most significant bit rate nibbles
bit_rate_hi = bytestream2_get_byte(gb);
// Least significant original bit rate word
s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16);
// Least significant scaled bit rate word
s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12);
// Setup number of fullband channels
s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1);
s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS);
// Setup band limit
switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) {
case LBR_FLAG_BAND_LIMIT_NONE:
s->band_limit = 0;
break;
case LBR_FLAG_BAND_LIMIT_1_2:
s->band_limit = 1;
break;
case LBR_FLAG_BAND_LIMIT_1_4:
s->band_limit = 2;
break;
default:
avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK);
return AVERROR_PATCHWELCOME;
}
// Setup frequency range
if (s->sample_rate < 14000)
s->freq_range = 0;
else if (s->sample_rate < 28000)
s->freq_range = 1;
else
s->freq_range = 2;
// Setup resolution profile
if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2))
s->res_profile = 2;
else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2))
s->res_profile = 1;
else
s->res_profile = 0;
// Setup limited sample rate, number of subbands, etc
s->limited_rate = s->sample_rate >> s->band_limit;
s->limited_range = s->freq_range - s->band_limit;
if (s->limited_range < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n");
return AVERROR_INVALIDDATA;
}
s->nsubbands = 8 << s->limited_range;
s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2);
if (s->g3_avg_only_start_sb > s->nsubbands)
s->g3_avg_only_start_sb = s->nsubbands;
s->min_mono_subband = s->nsubbands * 2000 / (s->limited_rate / 2);
if (s->min_mono_subband > s->nsubbands)
s->min_mono_subband = s->nsubbands;
s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2);
if (s->max_mono_subband > s->nsubbands)
s->max_mono_subband = s->nsubbands;
// Handle change of sample rate
if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0)
return AVERROR(ENOMEM);
// Setup stereo downmix
if (s->flags & LBR_FLAG_DMIX_STEREO) {
DCAContext *dca = s->avctx->priv_data;
if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n");
return AVERROR_INVALIDDATA;
}
// This decoder doesn't support ECS chunk
if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) {
avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix");
s->warned |= 4;
}
// Account for extra downmixed channel pair
s->nchannels_total += 2;
s->nchannels = 2;
s->ch_mask = DCA_SPEAKER_PAIR_LR;
s->flags &= ~LBR_FLAG_LFE_PRESENT;
}
// Handle change of sample rate or number of channels
if (old_rate != s->sample_rate
|| old_band_limit != s->band_limit
|| old_nchannels != s->nchannels) {
if (alloc_sample_buffer(s) < 0)
return AVERROR(ENOMEM);
ff_dca_lbr_flush(s);
}
return 0;
}
int ff_dca_lbr_parse(DCALbrDecoder *s, uint8_t *data, DCAExssAsset *asset)
{
struct {
LBRChunk lfe;
LBRChunk tonal;
LBRChunk tonal_grp[5];
LBRChunk grid1[DCA_LBR_CHANNELS / 2];
LBRChunk hr_grid[DCA_LBR_CHANNELS / 2];
LBRChunk ts1[DCA_LBR_CHANNELS / 2];
LBRChunk ts2[DCA_LBR_CHANNELS / 2];
} chunk = { };
GetByteContext gb;
int i, ch, sb, sf, ret, group, chunk_id, chunk_len;
bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size);
// LBR sync word
if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n");
return AVERROR_INVALIDDATA;
}
// LBR header type
switch (bytestream2_get_byte(&gb)) {
case LBR_HEADER_SYNC_ONLY:
if (!s->sample_rate) {
av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n");
return AVERROR_INVALIDDATA;
}
break;
case LBR_HEADER_DECODER_INIT:
if ((ret = parse_decoder_init(s, &gb)) < 0) {
s->sample_rate = 0;
return ret;
}
break;
default:
av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n");
return AVERROR_INVALIDDATA;
}
// LBR frame chunk header
chunk_id = bytestream2_get_byte(&gb);
chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
if (chunk_len > bytestream2_get_bytes_left(&gb)) {
chunk_len = bytestream2_get_bytes_left(&gb);
av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
bytestream2_init(&gb, gb.buffer, chunk_len);
switch (chunk_id & 0x7f) {
case LBR_CHUNK_FRAME:
if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) {
int checksum = bytestream2_get_be16(&gb);
uint16_t res = chunk_id;
res += (chunk_len >> 8) & 0xff;
res += chunk_len & 0xff;
for (i = 0; i < chunk_len - 2; i++)
res += gb.buffer[i];
if (checksum != res) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
} else {
bytestream2_skip(&gb, 2);
}
break;
case LBR_CHUNK_FRAME_NO_CSUM:
break;
default:
av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n");
return AVERROR_INVALIDDATA;
}
// Clear current frame
memset(s->quant_levels, 0, sizeof(s->quant_levels));
memset(s->sb_indices, 0xff, sizeof(s->sb_indices));
memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms));
memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms));
memset(s->ch_pres, 0, sizeof(s->ch_pres));
memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf));
memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf));
memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg));
memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf));
memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres));
memset(s->tonal_scf, 0, sizeof(s->tonal_scf));
memset(s->lfe_data, 0, sizeof(s->lfe_data));
s->part_stereo_pres = 0;
s->framenum = (s->framenum + 1) & 31;
for (ch = 0; ch < s->nchannels; ch++) {
for (sb = 0; sb < s->nsubbands / 4; sb++) {
s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4];
s->part_stereo[ch][sb][4] = 16;
}
}
memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0]));
for (group = 0; group < 5; group++) {
for (sf = 0; sf < 1 << group; sf++) {
int sf_idx = ((s->framenum << group) + sf) & 31;
s->tonal_bounds[group][sf_idx][0] =
s->tonal_bounds[group][sf_idx][1] = s->ntones;
}
}
// Parse chunk headers
while (bytestream2_get_bytes_left(&gb) > 0) {
chunk_id = bytestream2_get_byte(&gb);
chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
chunk_id &= 0x7f;
if (chunk_len > bytestream2_get_bytes_left(&gb)) {
chunk_len = bytestream2_get_bytes_left(&gb);
av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id);
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
switch (chunk_id) {
case LBR_CHUNK_LFE:
chunk.lfe.len = chunk_len;
chunk.lfe.data = gb.buffer;
break;
case LBR_CHUNK_SCF:
case LBR_CHUNK_TONAL:
case LBR_CHUNK_TONAL_SCF:
chunk.tonal.id = chunk_id;
chunk.tonal.len = chunk_len;
chunk.tonal.data = gb.buffer;
break;
case LBR_CHUNK_TONAL_GRP_1:
case LBR_CHUNK_TONAL_GRP_2:
case LBR_CHUNK_TONAL_GRP_3:
case LBR_CHUNK_TONAL_GRP_4:
case LBR_CHUNK_TONAL_GRP_5:
i = LBR_CHUNK_TONAL_GRP_5 - chunk_id;
chunk.tonal_grp[i].id = i;
chunk.tonal_grp[i].len = chunk_len;
chunk.tonal_grp[i].data = gb.buffer;
break;
case LBR_CHUNK_TONAL_SCF_GRP_1:
case LBR_CHUNK_TONAL_SCF_GRP_2:
case LBR_CHUNK_TONAL_SCF_GRP_3:
case LBR_CHUNK_TONAL_SCF_GRP_4:
case LBR_CHUNK_TONAL_SCF_GRP_5:
i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id;
chunk.tonal_grp[i].id = i;
chunk.tonal_grp[i].len = chunk_len;
chunk.tonal_grp[i].data = gb.buffer;
break;
case LBR_CHUNK_RES_GRID_LR:
case LBR_CHUNK_RES_GRID_LR + 1:
case LBR_CHUNK_RES_GRID_LR + 2:
i = chunk_id - LBR_CHUNK_RES_GRID_LR;
chunk.grid1[i].len = chunk_len;
chunk.grid1[i].data = gb.buffer;
break;
case LBR_CHUNK_RES_GRID_HR:
case LBR_CHUNK_RES_GRID_HR + 1:
case LBR_CHUNK_RES_GRID_HR + 2:
i = chunk_id - LBR_CHUNK_RES_GRID_HR;
chunk.hr_grid[i].len = chunk_len;
chunk.hr_grid[i].data = gb.buffer;
break;
case LBR_CHUNK_RES_TS_1:
case LBR_CHUNK_RES_TS_1 + 1:
case LBR_CHUNK_RES_TS_1 + 2:
i = chunk_id - LBR_CHUNK_RES_TS_1;
chunk.ts1[i].len = chunk_len;
chunk.ts1[i].data = gb.buffer;
break;
case LBR_CHUNK_RES_TS_2:
case LBR_CHUNK_RES_TS_2 + 1:
case LBR_CHUNK_RES_TS_2 + 2:
i = chunk_id - LBR_CHUNK_RES_TS_2;
chunk.ts2[i].len = chunk_len;
chunk.ts2[i].data = gb.buffer;
break;
}
bytestream2_skip(&gb, chunk_len);
}
// Parse the chunks
ret = parse_lfe_chunk(s, &chunk.lfe);
ret |= parse_tonal_chunk(s, &chunk.tonal);
for (i = 0; i < 5; i++)
ret |= parse_tonal_group(s, &chunk.tonal_grp[i]);
for (i = 0; i < (s->nchannels + 1) / 2; i++) {
int ch1 = i * 2;
int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
if (parse_grid_1_chunk (s, &chunk.grid1 [i], ch1, ch2) < 0 ||
parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) {
ret = -1;
continue;
}
// TS chunks depend on both grids. TS_2 depends on TS_1.
if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len)
continue;
if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 ||
parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) {
ret = -1;
continue;
}
}
if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
return 0;
}
/**
* Reconstruct high-frequency resolution grid from first and third grids
*/
static void decode_grid(DCALbrDecoder *s, int ch1, int ch2)
{
int i, ch, sb;
for (ch = ch1; ch <= ch2; ch++) {
for (sb = 0; sb < s->nsubbands; sb++) {
int g1_sb = ff_dca_scf_to_grid_1[sb];
uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb ];
uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1];
int w1 = ff_dca_grid_1_weights[g1_sb ][sb];
int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb];
uint8_t *hr_scf = s->high_res_scf[ch][sb];
if (sb < 4) {
for (i = 0; i < 8; i++) {
int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
hr_scf[i] = scf >> 7;
}
} else {
int8_t *g3_scf = s->grid_3_scf[ch][sb - 4];
int g3_avg = s->grid_3_avg[ch][sb - 4];
for (i = 0; i < 8; i++) {
int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i];
}
}
}
}
}
/**
* Fill unallocated subbands with randomness
*/
static void random_ts(DCALbrDecoder *s, int ch1, int ch2)
{
int i, j, k, ch, sb;
for (ch = ch1; ch <= ch2; ch++) {
for (sb = 0; sb < s->nsubbands; sb++) {
float *samples = s->time_samples[ch][sb];
if (s->ch_pres[ch] & (1U << sb))
continue; // Skip allocated subband
if (sb < 2) {
// The first two subbands are always zero
memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float));
} else if (sb < 10) {
for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++)
samples[i] = lbr_rand(s, sb);
} else {
for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) {
float accum[8] = { 0 };
// Modulate by subbands 2-5 in blocks of 8
for (k = 2; k < 6; k++) {
float *other = &s->time_samples[ch][k][i * 8];
for (j = 0; j < 8; j++)
accum[j] += fabs(other[j]);
}
for (j = 0; j < 8; j++)
samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb);
}
}
}
}
}
static void predict(float *samples, const float *coeff, int nsamples)
{
int i, j;
for (i = 0; i < nsamples; i++) {
float res = 0;
for (j = 0; j < 8; j++)
res += coeff[j] * samples[i - j - 1];
samples[i] -= res;
}
}
static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb)
{
int f = s->framenum & 1;
int ch;
for (ch = ch1; ch <= ch2; ch++) {
float *samples = s->time_samples[ch][sb];
if (!(s->ch_pres[ch] & (1U << sb)))
continue;
if (sb < 2) {
predict(samples, s->lpc_coeff[f^1][ch][sb][1], 16);
predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 64);
predict(samples + 80, s->lpc_coeff[f ][ch][sb][1], 48);
} else {
predict(samples, s->lpc_coeff[f^1][ch][sb][0], 16);
predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 112);
}
}
}
static void filter_ts(DCALbrDecoder *s, int ch1, int ch2)
{
int i, j, sb, ch;
for (sb = 0; sb < s->nsubbands; sb++) {
// Scale factors
for (ch = ch1; ch <= ch2; ch++) {
float *samples = s->time_samples[ch][sb];
uint8_t *hr_scf = s->high_res_scf[ch][sb];
if (sb < 4) {
for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) {
unsigned int scf = hr_scf[i];
if (scf > AMP_MAX)
scf = AMP_MAX;
for (j = 0; j < 16; j++)
samples[j] *= ff_dca_quant_amp[scf];
}
} else {
uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]];
for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) {
unsigned int scf = hr_scf[i / 8] - g2_scf[i];
if (scf > AMP_MAX)
scf = AMP_MAX;
samples[0] *= ff_dca_quant_amp[scf];
samples[1] *= ff_dca_quant_amp[scf];
}
}
}
// Mid-side stereo
if (ch1 != ch2) {
float *samples_l = s->time_samples[ch1][sb];
float *samples_r = s->time_samples[ch2][sb];
int ch2_pres = s->ch_pres[ch2] & (1U << sb);
for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) {
int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1;
int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1;
if (sb >= s->min_mono_subband) {
if (lrms && ch2_pres) {
if (sbms) {
for (j = 0; j < 16; j++) {
float tmp = samples_l[j];
samples_l[j] = samples_r[j];
samples_r[j] = -tmp;
}
} else {
for (j = 0; j < 16; j++) {
float tmp = samples_l[j];
samples_l[j] = samples_r[j];
samples_r[j] = tmp;
}
}
} else if (!ch2_pres) {
if (sbms && (s->part_stereo_pres & (1 << ch1))) {
for (j = 0; j < 16; j++)
samples_r[j] = -samples_l[j];
} else {
for (j = 0; j < 16; j++)
samples_r[j] = samples_l[j];
}
}
} else if (sbms && ch2_pres) {
for (j = 0; j < 16; j++) {
float tmp = samples_l[j];
samples_l[j] = (tmp + samples_r[j]) * 0.5f;
samples_r[j] = (tmp - samples_r[j]) * 0.5f;
}
}
samples_l += 16;
samples_r += 16;
}
}
// Inverse prediction
if (sb < 3)
synth_lpc(s, ch1, ch2, sb);
}
}
/**
* Modulate by interpolated partial stereo coefficients
*/
static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2)
{
int i, ch, sb, sf;
for (ch = ch1; ch <= ch2; ch++) {
for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) {
uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4];
float *samples = s->time_samples[ch][sb];
if (s->ch_pres[ch2] & (1U << sb))
continue;
for (sf = 1; sf <= 4; sf++, samples += 32) {
float prev = ff_dca_st_coeff[pt_st[sf - 1]];
float next = ff_dca_st_coeff[pt_st[sf ]];
for (i = 0; i < 32; i++)
samples[i] *= (32 - i) * prev + i * next;
}
}
}
}
/**
* Synthesise tones in the given group for the given tonal subframe
*/
static void synth_tones(DCALbrDecoder *s, int ch, float *values,
int group, int group_sf, int synth_idx)
{
int i, start, count;
if (synth_idx < 0)
return;
start = s->tonal_bounds[group][group_sf][0];
count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1);
for (i = 0; i < count; i++) {
DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)];
if (t->amp[ch]) {
float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]];
float c = amp * cos_tab[(t->phs[ch] ) & 255];
float s = amp * cos_tab[(t->phs[ch] + 64) & 255];
const float *cf = ff_dca_corr_cf[t->f_delt];
int x_freq = t->x_freq;
switch (x_freq) {
case 0:
goto p0;
case 1:
values[3] += cf[0] * -s;
values[2] += cf[1] * c;
values[1] += cf[2] * s;
values[0] += cf[3] * -c;
goto p1;
case 2:
values[2] += cf[0] * -s;
values[1] += cf[1] * c;
values[0] += cf[2] * s;
goto p2;
case 3:
values[1] += cf[0] * -s;
values[0] += cf[1] * c;
goto p3;
case 4:
values[0] += cf[0] * -s;
goto p4;
}
values[x_freq - 5] += cf[ 0] * -s;
p4: values[x_freq - 4] += cf[ 1] * c;
p3: values[x_freq - 3] += cf[ 2] * s;
p2: values[x_freq - 2] += cf[ 3] * -c;
p1: values[x_freq - 1] += cf[ 4] * -s;
p0: values[x_freq ] += cf[ 5] * c;
values[x_freq + 1] += cf[ 6] * s;
values[x_freq + 2] += cf[ 7] * -c;
values[x_freq + 3] += cf[ 8] * -s;
values[x_freq + 4] += cf[ 9] * c;
values[x_freq + 5] += cf[10] * s;
}
t->phs[ch] += t->ph_rot;
}
}
/**
* Synthesise all tones in all groups for the given residual subframe
*/
static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf)
{
int group;
// Tonal vs residual shift is 22 subframes
for (group = 0; group < 5; group++) {
int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group));
int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1;
synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx);
synth_tones(s, ch, values, group, (group_sf ) & 31, synth_idx);
}
}
static void transform_channel(DCALbrDecoder *s, int ch, float *output)
{
LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS ], [4]);
LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]);
int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range;
// Clear inactive subbands
if (nsubbands < noutsubbands)
memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0]));
for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) {
// Hybrid filterbank
s->dcadsp->lbr_bank(values, s->time_samples[ch],
ff_dca_bank_coeff, sf * 4, nsubbands);
base_func_synth(s, ch, values[0], sf);
s->imdct.imdct_calc(&s->imdct, result[0], values[0]);
// Long window and overlap-add
s->fdsp->vector_fmul_add(output, result[0], s->window,
s->history[ch], noutsubbands * 4);
s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands],
s->window, noutsubbands * 4);
output += noutsubbands * 4;
}
// Update history for LPC and forward MDCT
for (sb = 0; sb < nsubbands; sb++) {
float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float));
}
}
int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1;
const int8_t *reorder;
avctx->channel_layout = channel_layouts[ch_conf];
avctx->channels = nchannels = channel_counts[ch_conf];
avctx->sample_rate = s->sample_rate;
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
avctx->bits_per_raw_sample = 0;
avctx->profile = FF_PROFILE_DTS_EXPRESS;
avctx->bit_rate = s->bit_rate_scaled;
if (s->flags & LBR_FLAG_LFE_PRESENT) {
avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
avctx->channels++;
reorder = channel_reorder_lfe[ch_conf];
} else {
reorder = channel_reorder_nolfe[ch_conf];
}
frame->nb_samples = 1024 << s->freq_range;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// Filter fullband channels
for (i = 0; i < (s->nchannels + 1) / 2; i++) {
int ch1 = i * 2;
int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
decode_grid(s, ch1, ch2);
random_ts(s, ch1, ch2);
filter_ts(s, ch1, ch2);
if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1)))
decode_part_stereo(s, ch1, ch2);
if (ch1 < nchannels)
transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]);
if (ch1 != ch2 && ch2 < nchannels)
transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]);
}
// Interpolate LFE channel
if (s->flags & LBR_FLAG_LFE_PRESENT) {
s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]],
s->lfe_data, ff_dca_lfe_iir,
s->lfe_history, 16 << s->freq_range);
}
if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0)
return ret;
return 0;
}
av_cold void ff_dca_lbr_flush(DCALbrDecoder *s)
{
int ch, sb;
if (!s->sample_rate)
return;
// Clear history
memset(s->part_stereo, 16, sizeof(s->part_stereo));
memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff));
memset(s->history, 0, sizeof(s->history));
memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds));
memset(s->lfe_history, 0, sizeof(s->lfe_history));
s->framenum = 0;
s->ntones = 0;
for (ch = 0; ch < s->nchannels; ch++) {
for (sb = 0; sb < s->nsubbands; sb++) {
float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float));
}
}
}
av_cold int ff_dca_lbr_init(DCALbrDecoder *s)
{
init_tables();
if (!(s->fdsp = avpriv_float_dsp_alloc(0)))
return -1;
s->lbr_rand = 1;
return 0;
}
av_cold void ff_dca_lbr_close(DCALbrDecoder *s)
{
s->sample_rate = 0;
av_freep(&s->ts_buffer);
s->ts_size = 0;
av_freep(&s->fdsp);
ff_mdct_end(&s->imdct);
}
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCA_LBR_H
#define AVCODEC_DCA_LBR_H
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "dca.h"
#include "dca_exss.h"
#include "dcadsp.h"
#include "fft.h"
#define DCA_LBR_CHANNELS 6
#define DCA_LBR_CHANNELS_TOTAL 32
#define DCA_LBR_SUBBANDS 32
#define DCA_LBR_TONES 512
#define DCA_LBR_TIME_SAMPLES 128
#define DCA_LBR_TIME_HISTORY 8
typedef struct DCALbrTone {
uint8_t x_freq; ///< Spectral line offset
uint8_t f_delt; ///< Difference between original and center frequency
uint8_t ph_rot; ///< Phase rotation
uint8_t pad; ///< Padding field
uint8_t amp[DCA_LBR_CHANNELS]; ///< Per-channel amplitude
uint8_t phs[DCA_LBR_CHANNELS]; ///< Per-channel phase
} DCALbrTone;
typedef struct DCALbrDecoder {
AVCodecContext *avctx;
GetBitContext gb;
int sample_rate; ///< Sample rate of LBR audio
int ch_mask; ///< LBR speaker mask
int flags; ///< Flags for LBR decoder initialization
int bit_rate_orig; ///< Original bit rate
int bit_rate_scaled; ///< Scaled bit rate
int nchannels; ///< Number of fullband channels to decode
int nchannels_total; ///< Total number of fullband channels
int freq_range; ///< Frequency range of LBR audio
int band_limit; ///< Band limit factor
int limited_rate; ///< Band limited sample rate
int limited_range; ///< Band limited frequency range
int res_profile; ///< Resolution profile
int nsubbands; ///< Number of encoded subbands
int g3_avg_only_start_sb; ///< Subband index where grid 3 scale factors end
int min_mono_subband; ///< Subband index where mono encoding starts
int max_mono_subband; ///< Subband index where mono encoding ends
int framenum; ///< Lower 5 bits of current frame number
int lbr_rand; ///< Seed for subband randomization
int warned; ///< Flags for warning suppression
uint8_t quant_levels[DCA_LBR_CHANNELS / 2][DCA_LBR_SUBBANDS]; ///< Quantization levels
uint8_t sb_indices[DCA_LBR_SUBBANDS]; ///< Subband reordering indices
uint8_t sec_ch_sbms[DCA_LBR_CHANNELS / 2][DCA_LBR_SUBBANDS]; ///< Right channel inversion or mid/side decoding flags
uint8_t sec_ch_lrms[DCA_LBR_CHANNELS / 2][DCA_LBR_SUBBANDS]; ///< Flags indicating if left/right channel are swapped
uint32_t ch_pres[DCA_LBR_CHANNELS]; ///< Subband allocation flags
uint8_t grid_1_scf[DCA_LBR_CHANNELS][12][8]; ///< Grid 1 scale factors
uint8_t grid_2_scf[DCA_LBR_CHANNELS][3][64]; ///< Grid 2 scale factors
int8_t grid_3_avg[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS - 4]; ///< Grid 3 average values
int8_t grid_3_scf[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS - 4][8]; ///< Grid 3 scale factors
uint32_t grid_3_pres[DCA_LBR_CHANNELS]; ///< Grid 3 scale factors presence flags
uint8_t high_res_scf[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS][8]; ///< High-frequency resolution scale factors
uint8_t part_stereo[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS / 4][5]; ///< Partial stereo coefficients
uint8_t part_stereo_pres; ///< Partial stereo coefficients presence flags
float lpc_coeff[2][DCA_LBR_CHANNELS][3][2][8]; ///< Predictor coefficients
float sb_scf[DCA_LBR_SUBBANDS]; ///< Subband randomization scale factors
float *time_samples[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS]; ///< Time samples
float *ts_buffer; ///< Time sample buffer base
unsigned int ts_size; ///< Time sample buffer size
DECLARE_ALIGNED(32, float, history)[DCA_LBR_CHANNELS][DCA_LBR_SUBBANDS * 4]; ///< IMDCT history
DECLARE_ALIGNED(32, float, window)[DCA_LBR_SUBBANDS * 4]; ///< Long window for IMDCT
DECLARE_ALIGNED(32, float, lfe_data)[64]; ///< Decimated LFE samples
DECLARE_ALIGNED(32, float, lfe_history)[5][2]; ///< LFE IIR filter history
float lfe_scale; ///< Scale factor of LFE samples before IIR filter
uint8_t tonal_scf[6]; ///< Tonal scale factors
uint16_t tonal_bounds[5][32][2]; ///< Per-group per-subframe start/end positions of tones
DCALbrTone tones[DCA_LBR_TONES]; ///< Circular buffer of tones
int ntones; ///< Circular buffer head position
FFTContext imdct;
AVFloatDSPContext *fdsp;
DCADSPContext *dcadsp;
} DCALbrDecoder;
int ff_dca_lbr_parse(DCALbrDecoder *s, uint8_t *data, DCAExssAsset *asset);
int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame);
av_cold void ff_dca_lbr_flush(DCALbrDecoder *s);
av_cold int ff_dca_lbr_init(DCALbrDecoder *s);
av_cold void ff_dca_lbr_close(DCALbrDecoder *s);
#endif
......@@ -8729,3 +8729,469 @@ const int32_t ff_dca_sampling_freqs[16] = {
8000, 16000, 32000, 64000, 128000, 22050, 44100, 88200,
176400, 352800, 12000, 24000, 48000, 96000, 192000, 384000,
};
const uint16_t ff_dca_avg_g3_freqs[3] = { 16000, 18000, 24000 };
const uint16_t ff_dca_fst_amp[44] = {
0, 1, 2, 3,
4, 6, 8, 10,
12, 16, 20, 24,
28, 36, 44, 52,
60, 76, 92, 108,
124, 156, 188, 220,
252, 316, 380, 444,
508, 636, 764, 892,
1020, 1276, 1532, 1788,
2044, 2556, 3068, 3580,
4092, 5116, 6140, 7164
};
const uint8_t ff_dca_freq_to_sb[32] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
const int8_t ff_dca_ph0_shift[8] = {
-32, +96, -96, +32, +96, -32, +32, -96
};
const uint8_t ff_dca_grid_1_to_scf[11] = {
0, 1, 2, 3, 4, 6, 7, 10, 14, 19, 26
};
const uint8_t ff_dca_grid_2_to_scf[3] = {
4, 10, 18
};
const uint8_t ff_dca_scf_to_grid_1[32] = {
0, 1, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7,
7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10
};
const uint8_t ff_dca_scf_to_grid_2[32] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
const uint8_t ff_dca_grid_1_weights[12][32] = {
{
128, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 128, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 128, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 128, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 128, 128, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 0, 0, 128, 85,
43, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 0, 0, 0, 43,
85, 128, 96, 64, 32, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 32, 64, 96, 128, 102, 77,
51, 26, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 26, 51,
77, 102, 128, 107, 85, 64, 43, 21,
0, 0, 0, 0, 0, 0, 0, 0,
}, {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 21, 43, 64, 85, 107,
128, 110, 91, 73, 55, 37, 18, 0,
}, {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 18, 37, 55, 73, 91, 110, 128,
}, {
/* empty */
}
};
const uint8_t ff_dca_sb_reorder[8][8] = {
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 1, 0, 2, 3, 4, 5, 6, 7 },
{ 3, 1, 0, 2, 4, 5, 6, 7 },
{ 1, 2, 3, 0, 4, 5, 6, 7 },
{ 1, 2, 5, 3, 0, 4, 6, 7 },
{ 1, 2, 2, 5, 3, 0, 4, 6 },
{ 1, 2, 2, 6, 5, 3, 0, 4 },
{ 1, 2, 2, 6, 5, 4, 0, 3 }
};
const int8_t ff_dca_lfe_delta_index_16[8] = {
-4, -3, -2, -1, 2, 4, 6, 8
};
const int8_t ff_dca_lfe_delta_index_24[32] = {
-8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8
};
const uint16_t ff_dca_rsd_pack_5_in_8[256] = {
0x0000, 0x0100, 0x0200, 0x0040, 0x0140, 0x0240, 0x0080, 0x0180,
0x0280, 0x0010, 0x0110, 0x0210, 0x0050, 0x0150, 0x0250, 0x0090,
0x0190, 0x0290, 0x0020, 0x0120, 0x0220, 0x0060, 0x0160, 0x0260,
0x00a0, 0x01a0, 0x02a0, 0x0004, 0x0104, 0x0204, 0x0044, 0x0144,
0x0244, 0x0084, 0x0184, 0x0284, 0x0014, 0x0114, 0x0214, 0x0054,
0x0154, 0x0254, 0x0094, 0x0194, 0x0294, 0x0024, 0x0124, 0x0224,
0x0064, 0x0164, 0x0264, 0x00a4, 0x01a4, 0x02a4, 0x0008, 0x0108,
0x0208, 0x0048, 0x0148, 0x0248, 0x0088, 0x0188, 0x0288, 0x0018,
0x0118, 0x0218, 0x0058, 0x0158, 0x0258, 0x0098, 0x0198, 0x0298,
0x0028, 0x0128, 0x0228, 0x0068, 0x0168, 0x0268, 0x00a8, 0x01a8,
0x02a8, 0x0001, 0x0101, 0x0201, 0x0041, 0x0141, 0x0241, 0x0081,
0x0181, 0x0281, 0x0011, 0x0111, 0x0211, 0x0051, 0x0151, 0x0251,
0x0091, 0x0191, 0x0291, 0x0021, 0x0121, 0x0221, 0x0061, 0x0161,
0x0261, 0x00a1, 0x01a1, 0x02a1, 0x0005, 0x0105, 0x0205, 0x0045,
0x0145, 0x0245, 0x0085, 0x0185, 0x0285, 0x0015, 0x0115, 0x0215,
0x0055, 0x0155, 0x0255, 0x0095, 0x0195, 0x0295, 0x0025, 0x0125,
0x0225, 0x0065, 0x0165, 0x0265, 0x00a5, 0x01a5, 0x02a5, 0x0009,
0x0109, 0x0209, 0x0049, 0x0149, 0x0249, 0x0089, 0x0189, 0x0289,
0x0019, 0x0119, 0x0219, 0x0059, 0x0159, 0x0259, 0x0099, 0x0199,
0x0299, 0x0029, 0x0129, 0x0229, 0x0069, 0x0169, 0x0269, 0x00a9,
0x01a9, 0x02a9, 0x0002, 0x0102, 0x0202, 0x0042, 0x0142, 0x0242,
0x0082, 0x0182, 0x0282, 0x0012, 0x0112, 0x0212, 0x0052, 0x0152,
0x0252, 0x0092, 0x0192, 0x0292, 0x0022, 0x0122, 0x0222, 0x0062,
0x0162, 0x0262, 0x00a2, 0x01a2, 0x02a2, 0x0006, 0x0106, 0x0206,
0x0046, 0x0146, 0x0246, 0x0086, 0x0186, 0x0286, 0x0016, 0x0116,
0x0216, 0x0056, 0x0156, 0x0256, 0x0096, 0x0196, 0x0296, 0x0026,
0x0126, 0x0226, 0x0066, 0x0166, 0x0266, 0x00a6, 0x01a6, 0x02a6,
0x000a, 0x010a, 0x020a, 0x004a, 0x014a, 0x024a, 0x008a, 0x018a,
0x028a, 0x001a, 0x011a, 0x021a, 0x005a, 0x015a, 0x025a, 0x009a,
0x019a, 0x029a, 0x002a, 0x012a, 0x022a, 0x006a, 0x016a, 0x026a,
0x00aa, 0x01aa, 0x02aa, 0x0155, 0x0155, 0x0155, 0x0155, 0x0155,
0x0155, 0x0155, 0x0155, 0x0155, 0x0155, 0x0155, 0x0155, 0x0155
};
const uint8_t ff_dca_rsd_pack_3_in_7[128][3] = {
{ 0, 0, 0 }, { 0, 0, 1 }, { 0, 0, 2 }, { 0, 0, 3 },
{ 0, 0, 4 }, { 0, 1, 0 }, { 0, 1, 1 }, { 0, 1, 2 },
{ 0, 1, 3 }, { 0, 1, 4 }, { 0, 2, 0 }, { 0, 2, 1 },
{ 0, 2, 2 }, { 0, 2, 3 }, { 0, 2, 4 }, { 0, 3, 0 },
{ 0, 3, 1 }, { 0, 3, 2 }, { 0, 3, 3 }, { 0, 3, 4 },
{ 0, 4, 0 }, { 0, 4, 1 }, { 0, 4, 2 }, { 0, 4, 3 },
{ 0, 4, 4 }, { 1, 0, 0 }, { 1, 0, 1 }, { 1, 0, 2 },
{ 1, 0, 3 }, { 1, 0, 4 }, { 1, 1, 0 }, { 1, 1, 1 },
{ 1, 1, 2 }, { 1, 1, 3 }, { 1, 1, 4 }, { 1, 2, 0 },
{ 1, 2, 1 }, { 1, 2, 2 }, { 1, 2, 3 }, { 1, 2, 4 },
{ 1, 3, 0 }, { 1, 3, 1 }, { 1, 3, 2 }, { 1, 3, 3 },
{ 1, 3, 4 }, { 1, 4, 0 }, { 1, 4, 1 }, { 1, 4, 2 },
{ 1, 4, 3 }, { 1, 4, 4 }, { 2, 0, 0 }, { 2, 0, 1 },
{ 2, 0, 2 }, { 2, 0, 3 }, { 2, 0, 4 }, { 2, 1, 0 },
{ 2, 1, 1 }, { 2, 1, 2 }, { 2, 1, 3 }, { 2, 1, 4 },
{ 2, 2, 0 }, { 2, 2, 1 }, { 2, 2, 2 }, { 2, 2, 3 },
{ 2, 2, 4 }, { 2, 3, 0 }, { 2, 3, 1 }, { 2, 3, 2 },
{ 2, 3, 3 }, { 2, 3, 4 }, { 2, 4, 0 }, { 2, 4, 1 },
{ 2, 4, 2 }, { 2, 4, 3 }, { 2, 4, 4 }, { 3, 0, 0 },
{ 3, 0, 1 }, { 3, 0, 2 }, { 3, 0, 3 }, { 3, 0, 4 },
{ 3, 1, 0 }, { 3, 1, 1 }, { 3, 1, 2 }, { 3, 1, 3 },
{ 3, 1, 4 }, { 3, 2, 0 }, { 3, 2, 1 }, { 3, 2, 2 },
{ 3, 2, 3 }, { 3, 2, 4 }, { 3, 3, 0 }, { 3, 3, 1 },
{ 3, 3, 2 }, { 3, 3, 3 }, { 3, 3, 4 }, { 3, 4, 0 },
{ 3, 4, 1 }, { 3, 4, 2 }, { 3, 4, 3 }, { 3, 4, 4 },
{ 4, 0, 0 }, { 4, 0, 1 }, { 4, 0, 2 }, { 4, 0, 3 },
{ 4, 0, 4 }, { 4, 1, 0 }, { 4, 1, 1 }, { 4, 1, 2 },
{ 4, 1, 3 }, { 4, 1, 4 }, { 4, 2, 0 }, { 4, 2, 1 },
{ 4, 2, 2 }, { 4, 2, 3 }, { 4, 2, 4 }, { 4, 3, 0 },
{ 4, 3, 1 }, { 4, 3, 2 }, { 4, 3, 3 }, { 4, 3, 4 },
{ 4, 4, 0 }, { 4, 4, 1 }, { 4, 4, 2 }, { 4, 4, 3 },
{ 4, 4, 4 }, { 2, 2, 2 }, { 2, 2, 2 }, { 2, 2, 2 }
};
const float ff_dca_rsd_level_2a[2] = {
-0.47, 0.47
};
const float ff_dca_rsd_level_2b[2] = {
-0.645, 0.645
};
const float ff_dca_rsd_level_3[3] = {
-0.645, 0.0, 0.645
};
const float ff_dca_rsd_level_5[5] = {
-0.875, -0.375, 0.0, 0.375, 0.875
};
const float ff_dca_rsd_level_8[8] = {
-1.0, -0.625, -0.291666667, 0.0, 0.25, 0.5, 0.75, 1.0
};
const float ff_dca_rsd_level_16[16] = {
-1.3125, -1.1375, -0.9625, -0.7875,
-0.6125, -0.4375, -0.2625, -0.0875,
0.0875, 0.2625, 0.4375, 0.6125,
0.7875, 0.9625, 1.1375, 1.3125
};
const float ff_dca_synth_env[32] = {
0.00240763666390, 0.00960735979838, 0.02152983213390, 0.03806023374436,
0.05903936782582, 0.08426519384873, 0.11349477331863, 0.14644660940673,
0.18280335791818, 0.22221488349020, 0.26430163158700, 0.30865828381746,
0.35485766137277, 0.40245483899194, 0.45099142983522, 0.5,
0.54900857016478, 0.59754516100806, 0.64514233862723, 0.69134171618254,
0.73569836841300, 0.77778511650980, 0.81719664208182, 0.85355339059327,
0.88650522668137, 0.91573480615127, 0.94096063217418, 0.96193976625564,
0.97847016786610, 0.99039264020162, 0.99759236333610, 1.0
};
const float ff_dca_corr_cf[32][11] = {
{-0.01179, 0.04281, 0.46712, 0.46345,-3.94525, 3.94525,
-0.46345,-0.46712,-0.04281, 0.01179,-0.00299 },
{-0.00929, 0.04882, 0.45252, 0.37972,-3.85446, 4.03189,
-0.55069,-0.48040,-0.03599, 0.01445,-0.00229 },
{-0.00696, 0.05403, 0.43674, 0.29961,-3.75975, 4.11413,
-0.64135,-0.49221,-0.02834, 0.01726,-0.00156 },
{-0.00481, 0.05847, 0.41993, 0.22319,-3.66138, 4.19175,
-0.73529,-0.50241,-0.01983, 0.02021,-0.00080 },
{-0.00284, 0.06216, 0.40224, 0.15053,-3.55963, 4.26452,
-0.83239,-0.51085,-0.01047, 0.02328,-0.00003 },
{-0.00105, 0.06515, 0.38378, 0.08168,-3.45475, 4.33225,
-0.93249,-0.51738,-0.00024, 0.02646, 0.00074 },
{ 0.00054, 0.06745, 0.36471, 0.01668,-3.34703, 4.39475,
-1.03543,-0.52184, 0.01085, 0.02973, 0.00152 },
{ 0.00195, 0.06912, 0.34515,-0.04445,-3.23676, 4.45185,
-1.14105,-0.52410, 0.02280, 0.03306, 0.00228 },
{ 0.00318, 0.07017, 0.32521,-0.10168,-3.12422, 4.50339,
-1.24914,-0.52400, 0.03561, 0.03643, 0.00302 },
{ 0.00422, 0.07065, 0.30503,-0.15503,-3.00969, 4.54921,
-1.35952,-0.52141, 0.04925, 0.03981, 0.00373 },
{ 0.00508, 0.07061, 0.28471,-0.20450,-2.89348, 4.58919,
-1.47197,-0.51618, 0.06370, 0.04319, 0.00440 },
{ 0.00577, 0.07007, 0.26436,-0.25013,-2.77587, 4.62321,
-1.58627,-0.50818, 0.07895, 0.04652, 0.00501 },
{ 0.00629, 0.06909, 0.24410,-0.29194,-2.65716, 4.65118,
-1.70219,-0.49727, 0.09494, 0.04979, 0.00556 },
{ 0.00666, 0.06769, 0.22400,-0.33000,-2.53764, 4.67302,
-1.81949,-0.48335, 0.11166, 0.05295, 0.00604 },
{ 0.00687, 0.06592, 0.20416,-0.36435,-2.41760, 4.68866,
-1.93791,-0.46627, 0.12904, 0.05597, 0.00642 },
{ 0.00694, 0.06383, 0.18468,-0.39506,-2.29732, 4.69806,
-2.05720,-0.44593, 0.14705, 0.05881, 0.00671 },
{ 0.00689, 0.06144, 0.16561,-0.42223,-2.17710, 4.70120,
-2.17710,-0.42223, 0.16561, 0.06144, 0.00689 },
{ 0.00671, 0.05881, 0.14705,-0.44593,-2.05720, 4.69806,
-2.29732,-0.39506, 0.18468, 0.06383, 0.00694 },
{ 0.00642, 0.05597, 0.12904,-0.46627,-1.93791, 4.68865,
-2.41759,-0.36435, 0.20416, 0.06592, 0.00687 },
{ 0.00604, 0.05295, 0.11166,-0.48334,-1.81949, 4.67301,
-2.53763,-0.33000, 0.22400, 0.06769, 0.00666 },
{ 0.00556, 0.04979, 0.09494,-0.49727,-1.70219, 4.65117,
-2.65715,-0.29194, 0.24409, 0.06909, 0.00629 },
{ 0.00501, 0.04652, 0.07894,-0.50818,-1.58627, 4.62321,
-2.77587,-0.25013, 0.26436, 0.07007, 0.00577 },
{ 0.00440, 0.04319, 0.06370,-0.51618,-1.47197, 4.58919,
-2.89348,-0.20450, 0.28471, 0.07061, 0.00508 },
{ 0.00373, 0.03981, 0.04925,-0.52141,-1.35952, 4.54921,
-3.00970,-0.15503, 0.30503, 0.07065, 0.00422 },
{ 0.00302, 0.03643, 0.03561,-0.52400,-1.24915, 4.50339,
-3.12422,-0.10168, 0.32521, 0.07017, 0.00318 },
{ 0.00228, 0.03306, 0.02280,-0.52410,-1.14105, 4.45186,
-3.23677,-0.04445, 0.34515, 0.06912, 0.00195 },
{ 0.00152, 0.02973, 0.01085,-0.52184,-1.03544, 4.39477,
-3.34704, 0.01668, 0.36471, 0.06745, 0.00054 },
{ 0.00074, 0.02646,-0.00024,-0.51738,-0.93249, 4.33226,
-3.45476, 0.08168, 0.38378, 0.06515,-0.00105 },
{-0.00003, 0.02328,-0.01047,-0.51085,-0.83239, 4.26452,
-3.55963, 0.15053, 0.40224, 0.06216,-0.00284 },
{-0.00080, 0.02021,-0.01983,-0.50241,-0.73529, 4.19174,
-3.66138, 0.22319, 0.41993, 0.05847,-0.00481 },
{-0.00156, 0.01726,-0.02834,-0.49221,-0.64135, 4.11413,
-3.75974, 0.29961, 0.43674, 0.05403,-0.00696 },
{-0.00229, 0.01445,-0.03599,-0.48040,-0.55069, 4.03188,
-3.85445, 0.37972, 0.45251, 0.04882,-0.00929 },
};
const float ff_dca_quant_amp[57] = {
4.88281250E-04, 1.46484375E-03, 2.32267031E-03, 3.28475167E-03,
4.64534014E-03, 6.56950334E-03, 9.29068029E-03, 1.31390067E-02,
1.85813606E-02, 2.62780134E-02, 3.71627212E-02, 5.25560267E-02,
7.43254423E-02, 1.05112053E-01, 1.48650885E-01, 2.10224107E-01,
2.97301769E-01, 4.20448214E-01, 5.94603539E-01, 8.40896428E-01,
1.18920708E+00, 1.68179286E+00, 2.37841415E+00, 3.36358571E+00,
4.75682831E+00, 6.72717142E+00, 9.51365662E+00, 1.34543428E+01,
1.90273132E+01, 2.69086857E+01, 3.80546265E+01, 5.38173714E+01,
7.61092529E+01, 1.07634743E+02, 1.52218506E+02, 2.15269485E+02,
3.04437012E+02, 4.30538971E+02, 6.08874023E+02, 8.61077942E+02,
1.21774805E+03, 1.72215588E+03, 2.43549609E+03, 3.44431177E+03,
4.87099219E+03, 6.88862354E+03, 9.74198438E+03, 1.37772471E+04,
1.94839688E+04, 2.75544941E+04, 3.89679375E+04, 5.51089883E+04,
7.79358750E+04, 1.10217977E+05, 1.55871750E+05, 2.20435953E+05,
0.00000000E+00,
};
const float ff_dca_st_coeff[34] = {
2.69086857E+01, 2.69086857E+01, 1.34543419E+01, 6.72717142E+00,
3.36358571E+00, 1.68179286E+00, 8.40896428E-01, 5.94603479E-01,
4.20448214E-01, 2.97301799E-01, 2.10224107E-01, 1.48650900E-01,
1.05112098E-01, 7.43253976E-02, 5.25560006E-02, 3.71626988E-02,
3.12500000E-02, 2.62780003E-02, 1.85813997E-02, 1.31390002E-02,
9.29069985E-03, 6.56950008E-03, 4.64530010E-03, 3.28480010E-03,
2.32270011E-03, 1.64240005E-03, 1.16130000E-03, 5.80699998E-04,
2.90299999E-04, 1.45200000E-04, 7.25999998E-05, 3.62999999E-05,
1.82000003E-05, 0.00000000E+00,
};
const float ff_dca_long_window[128] = {
0.00000000E+00, 7.42882412E-06, 5.28020973E-05, 1.71007006E-04,
3.96653224E-04, 7.63946096E-04, 1.30655791E-03, 2.05750111E-03,
3.04900459E-03, 4.31239139E-03, 5.87796280E-03, 7.77488295E-03,
1.00310687E-02, 1.26730874E-02, 1.57260559E-02, 1.92135461E-02,
2.31574941E-02, 2.75781266E-02, 3.24938744E-02, 3.79213169E-02,
4.38751020E-02, 5.03679104E-02, 5.74104004E-02, 6.50111660E-02,
7.31767192E-02, 8.19114447E-02, 9.12176073E-02, 1.01095326E-01,
1.11542597E-01, 1.22555278E-01, 1.34127125E-01, 1.46249816E-01,
1.58912972E-01, 1.72104210E-01, 1.85809180E-01, 2.00011641E-01,
2.14693516E-01, 2.29834959E-01, 2.45414421E-01, 2.61408776E-01,
2.77793378E-01, 2.94542134E-01, 3.11627686E-01, 3.29021394E-01,
3.46693635E-01, 3.64613682E-01, 3.82750064E-01, 4.01070446E-01,
4.19541985E-01, 4.38131332E-01, 4.56804723E-01, 4.75528270E-01,
4.94267941E-01, 5.12989700E-01, 5.31659782E-01, 5.50244689E-01,
5.68711281E-01, 5.87027133E-01, 6.05160415E-01, 6.23080134E-01,
6.40756190E-01, 6.58159554E-01, 6.75262392E-01, 6.92038059E-01,
7.08461344E-01, 7.24508464E-01, 7.40157187E-01, 7.55386829E-01,
7.70178556E-01, 7.84515142E-01, 7.98381269E-01, 8.11763465E-01,
8.24650168E-01, 8.37031603E-01, 8.48900259E-01, 8.60250235E-01,
8.71077836E-01, 8.81381273E-01, 8.91160548E-01, 9.00417745E-01,
9.09156621E-01, 9.17382956E-01, 9.25104082E-01, 9.32328999E-01,
9.39068437E-01, 9.45334494E-01, 9.51140642E-01, 9.56501782E-01,
9.61433768E-01, 9.65953648E-01, 9.70079303E-01, 9.73829389E-01,
9.77223217E-01, 9.80280578E-01, 9.83021557E-01, 9.85466540E-01,
9.87635851E-01, 9.89549816E-01, 9.91228402E-01, 9.92691338E-01,
9.93957877E-01, 9.95046616E-01, 9.95975435E-01, 9.96761382E-01,
9.97420728E-01, 9.97968733E-01, 9.98419642E-01, 9.98786569E-01,
9.99081731E-01, 9.99315977E-01, 9.99499321E-01, 9.99640644E-01,
9.99747574E-01, 9.99826968E-01, 9.99884665E-01, 9.99925494E-01,
9.99953628E-01, 9.99972343E-01, 9.99984324E-01, 9.99991655E-01,
9.99995887E-01, 9.99998152E-01, 9.99999285E-01, 9.99999762E-01,
9.99999940E-01, 1.00000000E+00, 1.00000000E+00, 1.00000000E+00,
};
const float ff_dca_lfe_step_size_16[101] = {
2.1362956633198035E-004, 2.4414807580797754E-004, 2.7466658528397473E-004,
2.7466658528397473E-004, 3.0518509475997192E-004, 3.3570360423596911E-004,
3.9674062318796350E-004, 4.2725913266396069E-004, 4.5777764213995788E-004,
5.1881466109195227E-004, 5.7985168004394665E-004, 6.1037018951994385E-004,
6.7140720847193823E-004, 7.6296273689992981E-004, 8.2399975585192419E-004,
9.1555528427991577E-004, 1.0071108127079073E-003, 1.0986663411358989E-003,
1.2207403790398877E-003, 1.3428144169438765E-003, 1.4648884548478652E-003,
1.6174810022278512E-003, 1.7700735496078372E-003, 1.9531846064638203E-003,
2.1362956633198035E-003, 2.3499252296517838E-003, 2.5940733054597613E-003,
2.8687398907437361E-003, 3.1434064760277108E-003, 3.4485915707876827E-003,
3.7842951750236518E-003, 4.1810357982116153E-003, 4.6082949308755760E-003,
5.0660725730155339E-003, 5.5543687246314890E-003, 6.1037018951994385E-003,
6.7445905941953795E-003, 7.4159978026673177E-003, 8.1484420300912512E-003,
8.9419232764671782E-003, 9.8574785607470940E-003, 1.0834070863979004E-002,
1.1932737205114903E-002, 1.3122959074678793E-002, 1.4435254982146673E-002,
1.5869624927518540E-002, 1.7456587420270394E-002, 1.9196142460402233E-002,
2.1118808557390057E-002, 2.3224585711233862E-002, 2.5543992431409649E-002,
2.8107547227393413E-002, 3.0915250099185155E-002, 3.4028138065736867E-002,
3.7415692617572556E-002, 4.1169469283120215E-002, 4.5258949552903834E-002,
4.9806207464827418E-002, 5.4780724509414958E-002, 6.0274056215094456E-002,
6.6286202581865905E-002, 7.2908719138157288E-002, 8.0202642902920618E-002,
8.8229010895107887E-002, 9.7048860133671075E-002, 1.0675374614703818E-001,
1.1743522446363720E-001, 1.2918485061189611E-001, 1.4209418012024294E-001,
1.5628528702658162E-001, 1.7191076387829218E-001, 1.8912320322275461E-001,
2.0804467909787286E-001, 2.2882778405102694E-001, 2.5171666615802485E-001,
2.7689443647572254E-001, 3.0457472457045198E-001, 3.3503219702749720E-001,
3.6854152043214211E-001, 4.0537736136967073E-001, 4.4593646046327096E-001,
4.9052400280770286E-001, 5.3956724753563035E-001, 5.9352397228919340E-001,
6.5288247322000792E-001, 7.1816156498916595E-001, 7.9000213629566329E-001,
8.6898403881954400E-001, 9.5590075380718409E-001, 1.0514847254860074E+000,
1.1566209906308176E+000, 1.2722861415448470E+000, 1.3995178075502792E+000,
1.5394756920072024E+000, 1.6934110538041323E+000, 1.8627582628864405E+000,
2.0490432447279274E+000, 2.2539445173497725E+000, 2.4793237098300120E+000,
2.7272865993224893E+000, 3.0000000000000000E+000
};
const float ff_dca_lfe_step_size_24[144] = {
3.5762791128491298E-006, 3.9339070241340428E-006, 4.4107442391805934E-006,
4.7683721504655064E-006, 5.2452093655120570E-006, 5.8412558843202453E-006,
6.4373024031284336E-006, 7.0333489219366219E-006, 7.7486047445064479E-006,
8.4638605670762738E-006, 9.4175349971693751E-006, 1.0252000123500839E-005,
1.1324883857355578E-005, 1.2516976894971954E-005, 1.3709069932588331E-005,
1.5139581577727983E-005, 1.6570093222867636E-005, 1.8239023475530564E-005,
2.0146372335716766E-005, 2.2053721195902969E-005, 2.4318697967374082E-005,
2.6702884042606836E-005, 2.9444698029124504E-005, 3.2305721319403807E-005,
3.5643581824729662E-005, 3.9100651633817152E-005, 4.3034558657951193E-005,
4.7326093593370149E-005, 5.2094465743835655E-005, 5.7339675109347712E-005,
6.3061721689906320E-005, 6.9379814789273121E-005, 7.6293954407448102E-005,
8.3923349848192912E-005, 9.2268001111507552E-005, 1.0156632680491529E-004,
1.1169911762465449E-004, 1.2290479217824841E-004, 1.3518335046569711E-004,
1.4865400179076216E-004, 1.6355516476096688E-004, 1.7988683937631122E-004,
1.9788744424431852E-004, 2.1767618866875036E-004, 2.3949149125713007E-004,
2.6345256131321922E-004, 2.8979781744454115E-004, 3.1876567825861912E-004,
3.5059456236297636E-004, 3.8564209766889782E-004, 4.2426591208766842E-004,
4.6670442422681142E-004, 5.1331526199761173E-004, 5.6469447191887759E-004,
6.2108047259813216E-004, 6.8318851985794547E-004, 7.5149545091336386E-004,
8.2671652158695713E-004, 9.0932856909377204E-004, 1.0002852678639017E-003,
1.1003018737199156E-003, 1.2103320610919071E-003, 1.3314487137137310E-003,
1.4646055060154803E-003, 1.6109945310347714E-003, 1.7721655097205054E-003,
1.9493105351102991E-003, 2.1442177467605765E-003, 2.3586752842277626E-003,
2.5945904963720436E-003, 2.8539899413573674E-003, 3.1393770145627278E-003,
3.4533743206708813E-003, 3.7987236736683454E-003, 4.1785245154529228E-003,
4.5963531251374630E-003, 5.0560242004423382E-003, 5.5617100669992049E-003,
6.1178214690472445E-003, 6.7296036159519689E-003, 7.4025401356864135E-003,
8.1428299120461841E-003, 8.9571486660419298E-003, 9.8527681652031147E-003,
1.0838033060793050E-002, 1.1921884050593860E-002, 1.3114096297513997E-002,
1.4425517848195773E-002, 1.5868069633015350E-002, 1.7454864675386508E-002,
1.9200327301064409E-002, 2.1120431556753107E-002, 2.3232462791498040E-002,
2.5555613703204836E-002, 2.8111222757246822E-002, 3.0922297349250002E-002,
3.4014586688826884E-002, 3.7415985753057691E-002, 4.1157608170224208E-002,
4.5273428591898514E-002, 4.9800759530157987E-002, 5.4780847404104160E-002,
6.0258872539862694E-002, 6.6284783635709721E-002, 7.2913297762071824E-002,
8.0204615617348624E-002, 8.8225017574431602E-002, 9.7047578936526643E-002,
1.0675228914645780E-001, 1.1742748229831246E-001, 1.2917031397465634E-001,
1.4208735729305236E-001, 1.5629603341770570E-001, 1.7192568444319778E-001,
1.8911816944100493E-001, 2.0803001022696618E-001, 2.2883310661710579E-001,
2.5171640535788598E-001, 2.7688804589367461E-001, 3.0457679087839018E-001,
3.3503452957088109E-001, 3.6853794676517804E-001, 4.0539174144169587E-001,
4.4593089174400469E-001, 4.9052399283933557E-001, 5.3957635636047796E-001,
5.9353406352210802E-001, 6.5288742219059737E-001, 7.1817609288407480E-001,
7.8999373793527339E-001, 8.6899314749159184E-001, 9.5589243839889027E-001,
1.0514817299225008E+000, 1.1566298194682383E+000, 1.2722928848615747E+000,
1.3995221137430804E+000, 1.5394743131964581E+000, 1.6934218041207556E+000,
1.8627639845328312E+000, 2.0490403233814627E+000, 2.2539444272451910E+000,
2.4793389414952922E+000, 2.7272728356448215E+000, 2.9999998807906962E+000
};
const float ff_dca_bank_coeff[10] = {
0.022810893, 0.41799772, 0.90844810, 0.99973983,
0.068974845, 0.34675997, 0.29396889, 0.19642374,
0.308658270, 0.038060233
};
const float ff_dca_lfe_iir[5][4] = {
{ -0.98618466, 1.9861259, 1.0, -1.9840510 },
{ -0.98883152, 1.9887193, 1.0, -1.9979848 },
{ -0.99252087, 1.9923381, 1.0, -1.9990897 },
{ -0.99591690, 1.9956781, 1.0, -1.9993745 },
{ -0.99872285, 1.9984550, 1.0, -1.9994639 }
};
......@@ -73,4 +73,51 @@ extern const int32_t ff_dca_xll_band_coeff[20];
extern const int32_t ff_dca_sampling_freqs[16];
extern const uint16_t ff_dca_avg_g3_freqs[3];
extern const uint16_t ff_dca_fst_amp[44];
extern const uint8_t ff_dca_freq_to_sb[32];
extern const int8_t ff_dca_ph0_shift[8];
extern const uint8_t ff_dca_grid_1_to_scf[11];
extern const uint8_t ff_dca_grid_2_to_scf[3];
extern const uint8_t ff_dca_scf_to_grid_1[32];
extern const uint8_t ff_dca_scf_to_grid_2[32];
extern const uint8_t ff_dca_grid_1_weights[12][32];
extern const uint8_t ff_dca_sb_reorder[8][8];
extern const int8_t ff_dca_lfe_delta_index_16[8];
extern const int8_t ff_dca_lfe_delta_index_24[32];
extern const uint16_t ff_dca_rsd_pack_5_in_8[256];
extern const uint8_t ff_dca_rsd_pack_3_in_7[128][3];
extern const float ff_dca_rsd_level_2a[2];
extern const float ff_dca_rsd_level_2b[2];
extern const float ff_dca_rsd_level_3[3];
extern const float ff_dca_rsd_level_5[5];
extern const float ff_dca_rsd_level_8[8];
extern const float ff_dca_rsd_level_16[16];
extern const float ff_dca_synth_env[32];
extern const float ff_dca_corr_cf[32][11];
extern const float ff_dca_quant_amp[57];
extern const float ff_dca_st_coeff[34];
extern const float ff_dca_long_window[128];
extern const float ff_dca_lfe_step_size_16[101];
extern const float ff_dca_lfe_step_size_24[144];
extern const float ff_dca_bank_coeff[10];
extern const float ff_dca_lfe_iir[5][4];
#endif /* AVCODEC_DCADATA_H */
......@@ -235,6 +235,16 @@ static int dcadec_decode_frame(AVCodecContext *avctx, void *data,
}
}
// Parse LBR component in EXSS
if (asset && (asset->extension_mask & DCA_EXSS_LBR)) {
if ((ret = ff_dca_lbr_parse(&s->lbr, input, asset)) < 0) {
if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
return ret;
} else {
s->packet |= DCA_PACKET_LBR;
}
}
// Parse core extensions in EXSS or backward compatible core sub-stream
if ((s->packet & DCA_PACKET_CORE)
&& (ret = ff_dca_core_parse_exss(&s->core, input, asset)) < 0)
......@@ -242,7 +252,10 @@ static int dcadec_decode_frame(AVCodecContext *avctx, void *data,
}
// Filter the frame
if (s->packet & DCA_PACKET_XLL) {
if (s->packet & DCA_PACKET_LBR) {
if ((ret = ff_dca_lbr_filter_frame(&s->lbr, frame)) < 0)
return ret;
} else if (s->packet & DCA_PACKET_XLL) {
if (s->packet & DCA_PACKET_CORE) {
int x96_synth = -1;
......@@ -297,6 +310,7 @@ static av_cold void dcadec_flush(AVCodecContext *avctx)
ff_dca_core_flush(&s->core);
ff_dca_xll_flush(&s->xll);
ff_dca_lbr_flush(&s->lbr);
s->core_residual_valid = 0;
}
......@@ -307,6 +321,7 @@ static av_cold int dcadec_close(AVCodecContext *avctx)
ff_dca_core_close(&s->core);
ff_dca_xll_close(&s->xll);
ff_dca_lbr_close(&s->lbr);
av_freep(&s->buffer);
s->buffer_size = 0;
......@@ -322,15 +337,20 @@ static av_cold int dcadec_init(AVCodecContext *avctx)
s->core.avctx = avctx;
s->exss.avctx = avctx;
s->xll.avctx = avctx;
s->lbr.avctx = avctx;
ff_dca_init_vlcs();
if (ff_dca_core_init(&s->core) < 0)
return AVERROR(ENOMEM);
if (ff_dca_lbr_init(&s->lbr) < 0)
return AVERROR(ENOMEM);
ff_dcadsp_init(&s->dcadsp);
s->core.dcadsp = &s->dcadsp;
s->xll.dcadsp = &s->dcadsp;
s->lbr.dcadsp = &s->dcadsp;
s->crctab = av_crc_get_table(AV_CRC_16_CCITT);
......
......@@ -32,13 +32,15 @@
#include "dca_core.h"
#include "dca_exss.h"
#include "dca_xll.h"
#include "dca_lbr.h"
#define DCA_BUFFER_PADDING_SIZE 1024
#define DCA_PACKET_CORE 0x01
#define DCA_PACKET_EXSS 0x02
#define DCA_PACKET_XLL 0x04
#define DCA_PACKET_RECOVERY 0x08
#define DCA_PACKET_LBR 0x08
#define DCA_PACKET_RECOVERY 0x10
typedef struct DCAContext {
const AVClass *class; ///< class for AVOptions
......@@ -47,6 +49,7 @@ typedef struct DCAContext {
DCACoreDecoder core; ///< Core decoder context
DCAExssParser exss; ///< EXSS parser context
DCAXllDecoder xll; ///< XLL decoder context
DCALbrDecoder lbr; ///< LBR decoder context
DCADSPContext dcadsp;
......
......@@ -385,6 +385,77 @@ static void assemble_freq_bands_c(int32_t *dst, int32_t *src0, int32_t *src1,
}
}
static void lbr_bank_c(float output[32][4], float **input,
const float *coeff, ptrdiff_t ofs, ptrdiff_t len)
{
float SW0 = coeff[0];
float SW1 = coeff[1];
float SW2 = coeff[2];
float SW3 = coeff[3];
float C1 = coeff[4];
float C2 = coeff[5];
float C3 = coeff[6];
float C4 = coeff[7];
float AL1 = coeff[8];
float AL2 = coeff[9];
int i;
// Short window and 8 point forward MDCT
for (i = 0; i < len; i++) {
float *src = input[i] + ofs;
float a = src[-4] * SW0 - src[-1] * SW3;
float b = src[-3] * SW1 - src[-2] * SW2;
float c = src[ 2] * SW1 + src[ 1] * SW2;
float d = src[ 3] * SW0 + src[ 0] * SW3;
output[i][0] = C1 * b - C2 * c + C4 * a - C3 * d;
output[i][1] = C1 * d - C2 * a - C4 * b - C3 * c;
output[i][2] = C3 * b + C2 * d - C4 * c + C1 * a;
output[i][3] = C3 * a - C2 * b + C4 * d - C1 * c;
}
// Aliasing cancellation for high frequencies
for (i = 12; i < len - 1; i++) {
float a = output[i ][3] * AL1;
float b = output[i+1][0] * AL1;
output[i ][3] += b - a;
output[i+1][0] -= b + a;
a = output[i ][2] * AL2;
b = output[i+1][1] * AL2;
output[i ][2] += b - a;
output[i+1][1] -= b + a;
}
}
static void lfe_iir_c(float *output, const float *input,
const float iir[5][4], float hist[5][2],
ptrdiff_t factor)
{
float res, tmp;
int i, j, k;
for (i = 0; i < 64; i++) {
res = *input++;
for (j = 0; j < factor; j++) {
for (k = 0; k < 5; k++) {
tmp = hist[k][0] * iir[k][0] + hist[k][1] * iir[k][1] + res;
res = hist[k][0] * iir[k][2] + hist[k][1] * iir[k][3] + tmp;
hist[k][0] = hist[k][1];
hist[k][1] = tmp;
}
*output++ = res;
res = 0;
}
}
}
av_cold void ff_dcadsp_init(DCADSPContext *s)
{
s->decode_hf = decode_hf_c;
......@@ -411,6 +482,9 @@ av_cold void ff_dcadsp_init(DCADSPContext *s)
s->assemble_freq_bands = assemble_freq_bands_c;
s->lbr_bank = lbr_bank_c;
s->lfe_iir = lfe_iir_c;
if (ARCH_X86)
ff_dcadsp_init_x86(s);
}
......@@ -84,6 +84,13 @@ typedef struct DCADSPContext {
void (*assemble_freq_bands)(int32_t *dst, int32_t *src0, int32_t *src1,
const int32_t *coeff, ptrdiff_t len);
void (*lbr_bank)(float output[32][4], float **input,
const float *coeff, ptrdiff_t ofs, ptrdiff_t len);
void (*lfe_iir)(float *output, const float *input,
const float iir[5][4], float hist[5][2],
ptrdiff_t factor);
} DCADSPContext;
av_cold void ff_dcadsp_init(DCADSPContext *s);
......
......@@ -1038,13 +1038,209 @@ static const uint8_t *const bitalloc_bits[DCA_CODE_BOOKS][8] = {
bitalloc_129_bits_e, bitalloc_129_bits_f, bitalloc_129_bits_g, NULL }
};
static const uint16_t vlc_offs[63] = {
static const uint16_t tnl_grp_0_codes[37] = {
0x0000, 0x0003, 0x0004, 0x0007, 0x0001, 0x0009, 0x000a, 0x000d,
0x000e, 0x0006, 0x0012, 0x0005, 0x0015, 0x0016, 0x0022, 0x0025,
0x0035, 0x0076, 0x0002, 0x0042, 0x00b6, 0x0036, 0x00c2, 0x0136,
0x0182, 0x01c2, 0x03c2, 0x0482, 0x0682, 0x0082, 0x0882, 0x0a82,
0x0282, 0x2282, 0x3282, 0x1282, 0x5282,
};
static const uint16_t tnl_grp_1_codes[34] = {
0x0001, 0x0003, 0x0006, 0x0000, 0x0002, 0x0004, 0x0005, 0x0007,
0x0008, 0x000f, 0x001a, 0x001c, 0x001d, 0x000a, 0x002c, 0x002d,
0x000d, 0x002a, 0x004c, 0x004d, 0x006a, 0x008c, 0x00cd, 0x00ea,
0x000c, 0x010c, 0x01ea, 0x020c, 0x030c, 0x07ea, 0x0bea, 0x03ea,
0x13ea, 0x33ea,
};
static const uint16_t tnl_grp_2_codes[31] = {
0x0001, 0x0003, 0x0006, 0x0007, 0x0004, 0x0008, 0x000c, 0x0010,
0x0012, 0x001a, 0x0022, 0x0000, 0x000a, 0x0020, 0x0040, 0x004a,
0x006a, 0x0002, 0x002a, 0x0042, 0x0082, 0x00aa, 0x00e0, 0x0060,
0x00c2, 0x01c2, 0x0160, 0x0360, 0x0f60, 0x0760, 0x1760,
};
static const uint16_t tnl_grp_3_codes[28] = {
0x0001, 0x0006, 0x0008, 0x0014, 0x001c, 0x0000, 0x0002, 0x0004,
0x000a, 0x000c, 0x0010, 0x0012, 0x001a, 0x0020, 0x002a, 0x002c,
0x0032, 0x003a, 0x0022, 0x0030, 0x0062, 0x0064, 0x0070, 0x0024,
0x00a4, 0x01a4, 0x03a4, 0x07a4,
};
static const uint16_t tnl_grp_4_codes[23] = {
0x0001, 0x0000, 0x000a, 0x0006, 0x0012, 0x001e, 0x0022, 0x002e,
0x0036, 0x003e, 0x0002, 0x0016, 0x0032, 0x004e, 0x0056, 0x000e,
0x0042, 0x0072, 0x00c2, 0x00f2, 0x008e, 0x018e, 0x038e,
};
static const uint16_t tnl_scf_codes[20] = {
0x0000, 0x0001, 0x0002, 0x0005, 0x0006, 0x0007, 0x000b, 0x000c,
0x0013, 0x0014, 0x0003, 0x0004, 0x0023, 0x0064, 0x00a4, 0x0024,
0x0124, 0x0324, 0x0724, 0x0f24,
};
static const uint16_t damp_codes[7] = {
0x0001, 0x0000, 0x0002, 0x0006, 0x000e, 0x001e, 0x003e,
};
static const uint16_t dph_codes[9] = {
0x0000, 0x0002, 0x0003, 0x0001, 0x0009, 0x000d, 0x0005, 0x0015,
0x0035,
};
static const uint16_t fst_rsd_amp_codes[24] = {
0x0003, 0x0005, 0x0006, 0x0007, 0x0000, 0x0001, 0x0002, 0x0008,
0x0009, 0x000a, 0x0014, 0x0004, 0x001a, 0x001c, 0x0024, 0x002c,
0x003a, 0x000c, 0x003c, 0x004c, 0x00fc, 0x007c, 0x017c, 0x037c,
};
static const uint16_t rsd_apprx_codes[6] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f,
};
static const uint16_t rsd_amp_codes[33] = {
0x0001, 0x0000, 0x0002, 0x0003, 0x0004, 0x000e, 0x000f, 0x0016,
0x0007, 0x0027, 0x0037, 0x0026, 0x0066, 0x0006, 0x0017, 0x0046,
0x0097, 0x00d7, 0x0086, 0x00c6, 0x01c6, 0x0157, 0x0186, 0x0257,
0x0357, 0x0057, 0x0786, 0x0386, 0x0b86, 0x0457, 0x0c57, 0x1457,
0x1c57,
};
static const uint16_t avg_g3_codes[18] = {
0x0001, 0x0002, 0x0003, 0x0000, 0x000c, 0x0014, 0x0018, 0x0004,
0x0008, 0x0028, 0x0068, 0x0024, 0x00a4, 0x00e4, 0x0164, 0x0064,
0x0264, 0x0664,
};
static const uint16_t st_grid_codes[22] = {
0x0001, 0x0002, 0x0000, 0x0004, 0x0008, 0x001c, 0x004c, 0x006c,
0x000c, 0x002c, 0x008c, 0x00ac, 0x012c, 0x018c, 0x01ac, 0x038c,
0x03ac, 0x032c, 0x072c, 0x0f2c, 0x172c, 0x1f2c,
};
static const uint16_t grid_2_codes[20] = {
0x0000, 0x0002, 0x0003, 0x0001, 0x0005, 0x000d, 0x003d, 0x005d,
0x009d, 0x011d, 0x001d, 0x061d, 0x041d, 0x0c1d, 0x0a1d, 0x121d,
0x021d, 0x1a1d, 0x221d, 0x3a1d,
};
static const uint16_t grid_3_codes[13] = {
0x0001, 0x0002, 0x0000, 0x0004, 0x000c, 0x001c, 0x007c, 0x003c,
0x01bc, 0x00bc, 0x06bc, 0x02bc, 0x0abc,
};
static const uint16_t rsd_codes[9] = {
0x0001, 0x0003, 0x0000, 0x0002, 0x0006, 0x0004, 0x000c, 0x001c,
0x003c,
};
static const uint8_t tnl_grp_0_bitvals[74] = {
3, 5, 3, 9, 3, 4, 3, 6, 4, 10, 4, 13, 4, 7, 4, 11,
4, 8, 5, 12, 5, 14, 6, 15, 6, 18, 6, 1, 6, 17, 6, 16,
6, 21, 7, 20, 8, 19, 8, 22, 8, 25, 9, 26, 9, 23, 9, 3,
9, 24, 10, 29, 10, 27, 11, 28, 11, 30, 12, 33, 12, 31, 12, 32,
14, 34, 14, 37, 14, 36, 15, 35, 15, 0,
};
static const uint8_t tnl_grp_1_bitvals[68] = {
3, 9, 3, 6, 3, 5, 4, 4, 4, 8, 4, 10, 4, 1, 4, 11,
4, 7, 4, 13, 5, 12, 5, 14, 5, 17, 6, 16, 6, 15, 6, 18,
7, 20, 7, 19, 7, 21, 8, 25, 8, 23, 8, 22, 8, 24, 9, 26,
10, 3, 10, 29, 10, 30, 10, 27, 10, 28, 11, 31, 12, 32, 13, 33,
14, 34, 14, 0,
};
static const uint8_t tnl_grp_2_bitvals[62] = {
2, 1, 3, 6, 3, 5, 3, 7, 4, 9, 4, 8, 4, 4, 5, 10,
5, 11, 5, 13, 6, 12, 7, 14, 7, 16, 7, 15, 7, 17, 7, 18,
7, 19, 8, 22, 8, 20, 8, 21, 8, 3, 8, 24, 8, 25, 9, 23,
9, 26, 9, 27, 10, 28, 11, 29, 12, 31, 13, 30, 13, 0,
};
static const uint8_t tnl_grp_3_bitvals[56] = {
1, 1, 3, 6, 4, 5, 5, 9, 5, 4, 6, 8, 6, 14, 6, 10,
6, 21, 6, 13, 6, 7, 6, 3, 6, 16, 6, 2, 6, 18, 6, 17,
6, 11, 6, 15, 7, 19, 7, 23, 7, 24, 7, 22, 7, 12, 8, 20,
9, 25, 10, 26, 11, 27, 11, 0,
};
static const uint8_t tnl_grp_4_bitvals[46] = {
1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 6, 8, 6, 3, 6, 19,
6, 20, 6, 9, 7, 7, 7, 11, 7, 13, 7, 17, 7, 10, 8, 12,
8, 15, 8, 14, 8, 21, 8, 18, 9, 16, 10, 22, 10, 0,
};
static const uint8_t tnl_scf_bitvals[40] = {
3, 3, 3, 1, 3, 2, 3, 5, 3, 4, 3, 6, 4, 8, 4, 7,
5, 10, 5, 9, 6, 12, 6, 11, 6, 13, 7, 14, 8, 15, 9, 16,
10, 17, 11, 18, 12, 19, 12, 0,
};
static const uint8_t damp_bitvals[14] = {
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 0,
};
static const uint8_t dph_bitvals[18] = {
2, 2, 2, 1, 2, 8, 4, 3, 4, 7, 4, 4, 5, 6, 6, 5,
6, 0,
};
static const uint8_t fst_rsd_amp_bitvals[48] = {
3, 13, 3, 15, 3, 16, 3, 14, 4, 12, 4, 10, 4, 11, 4, 17,
4, 18, 5, 19, 5, 9, 6, 1, 6, 7, 6, 6, 6, 8, 6, 5,
6, 4, 7, 20, 7, 2, 7, 3, 8, 21, 9, 22, 10, 23, 10, 0,
};
static const uint8_t rsd_apprx_bitvals[12] = {
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 0,
};
static const uint8_t rsd_amp_bitvals[66] = {
2, 3, 3, 2, 3, 5, 3, 4, 3, 1, 4, 7, 4, 6, 5, 9,
6, 8, 6, 11, 6, 10, 7, 12, 7, 13, 8, 14, 8, 18, 8, 16,
8, 15, 8, 22, 9, 20, 9, 24, 9, 17, 10, 28, 10, 26, 10, 21,
10, 23, 11, 30, 11, 19, 12, 25, 12, 32, 13, 36, 13, 29, 13, 34,
13, 0,
};
static const uint8_t avg_g3_bitvals[36] = {
2, 15, 2, 16, 2, 17, 4, 14, 4, 18, 5, 12, 5, 13, 6, 10,
6, 11, 7, 19, 7, 9, 8, 20, 8, 8, 8, 7, 9, 21, 10, 6,
11, 23, 11, 0,
};
static const uint8_t st_grid_bitvals[44] = {
1, 6, 2, 1, 4, 4, 4, 8, 4, 3, 5, 10, 7, 12, 7, 5,
8, 14, 9, 16, 9, 7, 9, 18, 10, 11, 10, 9, 10, 20, 10, 22,
10, 2, 11, 13, 13, 17, 13, 24, 13, 15, 13, 0,
};
static const uint8_t grid_2_bitvals[40] = {
2, 3, 2, 2, 2, 1, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 12, 17, 13, 15, 13, 18,
14, 19, 14, 16, 14, 14, 14, 0,
};
static const uint8_t grid_3_bitvals[26] = {
1, 17, 2, 16, 3, 18, 4, 15, 5, 19, 6, 14, 7, 20, 8, 13,
9, 21, 10, 12, 11, 22, 12, 11, 12, 0,
};
static const uint8_t rsd_bitvals[18] = {
2, 2, 2, 3, 3, 1, 3, 4, 3, 0, 4, 5, 5, 6, 6, 7,
6, 4,
};
static const uint16_t vlc_offs[80] = {
0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622, 24200, 24748, 25276,
25792, 26306, 26826, 26890, 26954, 27468, 27500, 28038, 28554, 29086, 29630,
30150, 30214
};
DCAVLC ff_dca_vlc_bit_allocation;
......@@ -1052,9 +1248,22 @@ DCAVLC ff_dca_vlc_transition_mode;
DCAVLC ff_dca_vlc_scale_factor;
DCAVLC ff_dca_vlc_quant_index[DCA_CODE_BOOKS];
VLC ff_dca_vlc_tnl_grp[5];
VLC ff_dca_vlc_tnl_scf;
VLC ff_dca_vlc_damp;
VLC ff_dca_vlc_dph;
VLC ff_dca_vlc_fst_rsd_amp;
VLC ff_dca_vlc_rsd_apprx;
VLC ff_dca_vlc_rsd_amp;
VLC ff_dca_vlc_avg_g3;
VLC ff_dca_vlc_st_grid;
VLC ff_dca_vlc_grid_2;
VLC ff_dca_vlc_grid_3;
VLC ff_dca_vlc_rsd;
av_cold void ff_dca_init_vlcs(void)
{
static VLC_TYPE dca_table[23622][2];
static VLC_TYPE dca_table[30214][2];
static int vlcs_initialized = 0;
int i, j, k = 0;
......@@ -1095,5 +1304,34 @@ av_cold void ff_dca_init_vlcs(void)
bitalloc_sizes[i], bitalloc_bits[i][j], bitalloc_codes[i][j]);
}
#define LBR_INIT_VLC(vlc, tab, nb_bits) \
do { \
vlc.table = &dca_table[vlc_offs[k]]; \
vlc.table_allocated = vlc_offs[k + 1] - vlc_offs[k]; \
ff_init_vlc_sparse(&vlc, nb_bits, FF_ARRAY_ELEMS(tab##_codes), \
&tab##_bitvals[0], 2, 1, \
tab##_codes, 2, 2, \
&tab##_bitvals[1], 2, 1, \
INIT_VLC_LE | INIT_VLC_USE_NEW_STATIC); \
k++; \
} while (0)
LBR_INIT_VLC(ff_dca_vlc_tnl_grp[0], tnl_grp_0, 9);
LBR_INIT_VLC(ff_dca_vlc_tnl_grp[1], tnl_grp_1, 9);
LBR_INIT_VLC(ff_dca_vlc_tnl_grp[2], tnl_grp_2, 9);
LBR_INIT_VLC(ff_dca_vlc_tnl_grp[3], tnl_grp_3, 9);
LBR_INIT_VLC(ff_dca_vlc_tnl_grp[4], tnl_grp_4, 9);
LBR_INIT_VLC(ff_dca_vlc_tnl_scf, tnl_scf, 9);
LBR_INIT_VLC(ff_dca_vlc_damp, damp, 6);
LBR_INIT_VLC(ff_dca_vlc_dph, dph, 6);
LBR_INIT_VLC(ff_dca_vlc_fst_rsd_amp, fst_rsd_amp, 9);
LBR_INIT_VLC(ff_dca_vlc_rsd_apprx, rsd_apprx, 5);
LBR_INIT_VLC(ff_dca_vlc_rsd_amp, rsd_amp, 9);
LBR_INIT_VLC(ff_dca_vlc_avg_g3, avg_g3, 9);
LBR_INIT_VLC(ff_dca_vlc_st_grid, st_grid, 9);
LBR_INIT_VLC(ff_dca_vlc_grid_2, grid_2, 9);
LBR_INIT_VLC(ff_dca_vlc_grid_3, grid_3, 9);
LBR_INIT_VLC(ff_dca_vlc_rsd, rsd, 6);
vlcs_initialized = 1;
}
......@@ -41,6 +41,19 @@ extern DCAVLC ff_dca_vlc_transition_mode;
extern DCAVLC ff_dca_vlc_scale_factor;
extern DCAVLC ff_dca_vlc_quant_index[DCA_CODE_BOOKS];
extern VLC ff_dca_vlc_tnl_grp[5];
extern VLC ff_dca_vlc_tnl_scf;
extern VLC ff_dca_vlc_damp;
extern VLC ff_dca_vlc_dph;
extern VLC ff_dca_vlc_fst_rsd_amp;
extern VLC ff_dca_vlc_rsd_apprx;
extern VLC ff_dca_vlc_rsd_amp;
extern VLC ff_dca_vlc_avg_g3;
extern VLC ff_dca_vlc_st_grid;
extern VLC ff_dca_vlc_grid_2;
extern VLC ff_dca_vlc_grid_3;
extern VLC ff_dca_vlc_rsd;
av_cold void ff_dca_init_vlcs(void);
#endif /* AVCODEC_DCAHUFF_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment