Commit 58b42345 authored by Alexandra Khirnova's avatar Alexandra Khirnova Committed by Luca Barbato

dcadec: reorganise context data

place primary audio coding header data into DCAAudioHeader
structure to make DCAContext clearer
and move channel related data to DCAChan structure to make
them easier to use by extensions
Signed-off-by: 's avatarLuca Barbato <lu_zero@gentoo.org>
parent 3a4d369e
...@@ -130,6 +130,47 @@ typedef struct QMF64_table { ...@@ -130,6 +130,47 @@ typedef struct QMF64_table {
float rsin[32]; float rsin[32];
} QMF64_table; } QMF64_table;
/* Primary audio coding header */
typedef struct DCAAudioHeader {
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
int subframes; ///< number of subframes
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
} DCAAudioHeader;
typedef struct DCAChan {
DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_SUBBANDS][8];
/* Subband samples history (for ADPCM) */
DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_SUBBANDS][4];
int hist_index;
/* Half size is sufficient for core decoding, but for 96 kHz data
* we need QMF with 64 subbands and 1024 samples. */
DECLARE_ALIGNED(32, float, subband_fir_hist)[1024];
DECLARE_ALIGNED(32, float, subband_fir_noidea)[64];
/* Primary audio coding side information */
int prediction_mode[DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_SUBBANDS]; ///< transition mode (transients)
int32_t scale_factor[DCA_SUBBANDS][2];///< scale factors (2 if transient)
int joint_huff; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_SUBBANDS]; ///< joint subband scale factors
int32_t high_freq_vq[DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
} DCAChan;
typedef struct DCAContext { typedef struct DCAContext {
AVClass *class; ///< class for AVOptions AVClass *class; ///< class for AVOptions
AVCodecContext *avctx; AVCodecContext *avctx;
...@@ -163,28 +204,11 @@ typedef struct DCAContext { ...@@ -163,28 +204,11 @@ typedef struct DCAContext {
int dialog_norm; ///< dialog normalisation parameter int dialog_norm; ///< dialog normalisation parameter
/* Primary audio coding header */ /* Primary audio coding header */
int subframes; ///< number of subframes DCAAudioHeader audio_header;
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
/* Primary audio coding side information */ /* Primary audio coding side information */
int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale factors (2 if transient)
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
int dynrange_coef; ///< dynamic range coefficient int dynrange_coef; ///< dynamic range coefficient
...@@ -195,23 +219,17 @@ typedef struct DCAContext { ...@@ -195,23 +219,17 @@ typedef struct DCAContext {
uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes) uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
int32_t high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
int lfe_scale_factor; int lfe_scale_factor;
/* Subband samples history (for ADPCM) */ /* Subband samples history (for ADPCM) */
DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
/* Half size is sufficient for core decoding, but for 96 kHz data
* we need QMF with 64 subbands and 1024 samples. */
DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][1024];
DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][64];
int hist_index[DCA_PRIM_CHANNELS_MAX];
DECLARE_ALIGNED(32, float, raXin)[32]; DECLARE_ALIGNED(32, float, raXin)[32];
DCAChan dca_chan[DCA_PRIM_CHANNELS_MAX];
int output; ///< type of output int output; ///< type of output
DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1]; float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1]; float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
uint8_t *extra_channels_buffer; uint8_t *extra_channels_buffer;
......
...@@ -229,43 +229,47 @@ static int dca_parse_audio_coding_header(DCAContext *s, int base_channel) ...@@ -229,43 +229,47 @@ static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 }; static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 }; static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel; s->audio_header.total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
s->prim_channels = s->total_channels; s->audio_header.prim_channels = s->audio_header.total_channels;
if (s->prim_channels > DCA_PRIM_CHANNELS_MAX) if (s->audio_header.prim_channels > DCA_PRIM_CHANNELS_MAX)
s->prim_channels = DCA_PRIM_CHANNELS_MAX; s->audio_header.prim_channels = DCA_PRIM_CHANNELS_MAX;
for (i = base_channel; i < s->prim_channels; i++) { for (i = base_channel; i < s->audio_header.prim_channels; i++) {
s->subband_activity[i] = get_bits(&s->gb, 5) + 2; s->audio_header.subband_activity[i] = get_bits(&s->gb, 5) + 2;
if (s->subband_activity[i] > DCA_SUBBANDS) if (s->audio_header.subband_activity[i] > DCA_SUBBANDS)
s->subband_activity[i] = DCA_SUBBANDS; s->audio_header.subband_activity[i] = DCA_SUBBANDS;
} }
for (i = base_channel; i < s->prim_channels; i++) { for (i = base_channel; i < s->audio_header.prim_channels; i++) {
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1; s->audio_header.vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
if (s->vq_start_subband[i] > DCA_SUBBANDS) if (s->audio_header.vq_start_subband[i] > DCA_SUBBANDS)
s->vq_start_subband[i] = DCA_SUBBANDS; s->audio_header.vq_start_subband[i] = DCA_SUBBANDS;
} }
get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3); get_array(&s->gb, s->audio_header.joint_intensity + base_channel,
get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2); s->audio_header.prim_channels - base_channel, 3);
get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3); get_array(&s->gb, s->audio_header.transient_huffman + base_channel,
get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3); s->audio_header.prim_channels - base_channel, 2);
get_array(&s->gb, s->audio_header.scalefactor_huffman + base_channel,
s->audio_header.prim_channels - base_channel, 3);
get_array(&s->gb, s->audio_header.bitalloc_huffman + base_channel,
s->audio_header.prim_channels - base_channel, 3);
/* Get codebooks quantization indexes */ /* Get codebooks quantization indexes */
if (!base_channel) if (!base_channel)
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman)); memset(s->audio_header.quant_index_huffman, 0, sizeof(s->audio_header.quant_index_huffman));
for (j = 1; j < 11; j++) for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++) for (i = base_channel; i < s->audio_header.prim_channels; i++)
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]); s->audio_header.quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
/* Get scale factor adjustment */ /* Get scale factor adjustment */
for (j = 0; j < 11; j++) for (j = 0; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++) for (i = base_channel; i < s->audio_header.prim_channels; i++)
s->scalefactor_adj[i][j] = 1; s->audio_header.scalefactor_adj[i][j] = 1;
for (j = 1; j < 11; j++) for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++) for (i = base_channel; i < s->audio_header.prim_channels; i++)
if (s->quant_index_huffman[i][j] < thr[j]) if (s->audio_header.quant_index_huffman[i][j] < thr[j])
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)]; s->audio_header.scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
if (s->crc_present) { if (s->crc_present) {
/* Audio header CRC check */ /* Audio header CRC check */
...@@ -336,7 +340,7 @@ static int dca_parse_frame_header(DCAContext *s) ...@@ -336,7 +340,7 @@ static int dca_parse_frame_header(DCAContext *s)
s->output |= DCA_LFE; s->output |= DCA_LFE;
/* Primary audio coding header */ /* Primary audio coding header */
s->subframes = get_bits(&s->gb, 4) + 1; s->audio_header.subframes = get_bits(&s->gb, 4) + 1;
return dca_parse_audio_coding_header(s, 0); return dca_parse_audio_coding_header(s, 0);
} }
...@@ -371,53 +375,53 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index) ...@@ -371,53 +375,53 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3); s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
} }
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) for (k = 0; k < s->audio_header.subband_activity[j]; k++)
s->prediction_mode[j][k] = get_bits(&s->gb, 1); s->dca_chan[j].prediction_mode[k] = get_bits(&s->gb, 1);
} }
/* Get prediction codebook */ /* Get prediction codebook */
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) { for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
if (s->prediction_mode[j][k] > 0) { if (s->dca_chan[j].prediction_mode[k] > 0) {
/* (Prediction coefficient VQ address) */ /* (Prediction coefficient VQ address) */
s->prediction_vq[j][k] = get_bits(&s->gb, 12); s->dca_chan[j].prediction_vq[k] = get_bits(&s->gb, 12);
} }
} }
} }
/* Bit allocation index */ /* Bit allocation index */
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->vq_start_subband[j]; k++) { for (k = 0; k < s->audio_header.vq_start_subband[j]; k++) {
if (s->bitalloc_huffman[j] == 6) if (s->audio_header.bitalloc_huffman[j] == 6)
s->bitalloc[j][k] = get_bits(&s->gb, 5); s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 5);
else if (s->bitalloc_huffman[j] == 5) else if (s->audio_header.bitalloc_huffman[j] == 5)
s->bitalloc[j][k] = get_bits(&s->gb, 4); s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 4);
else if (s->bitalloc_huffman[j] == 7) { else if (s->audio_header.bitalloc_huffman[j] == 7) {
av_log(s->avctx, AV_LOG_ERROR, av_log(s->avctx, AV_LOG_ERROR,
"Invalid bit allocation index\n"); "Invalid bit allocation index\n");
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} else { } else {
s->bitalloc[j][k] = s->dca_chan[j].bitalloc[k] =
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]); get_bitalloc(&s->gb, &dca_bitalloc_index, s->audio_header.bitalloc_huffman[j]);
} }
if (s->bitalloc[j][k] > 26) { if (s->dca_chan[j].bitalloc[k] > 26) {
ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n", ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
j, k, s->bitalloc[j][k]); j, k, s->dca_chan[j].bitalloc[k]);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
} }
} }
/* Transition mode */ /* Transition mode */
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) { for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
s->transition_mode[j][k] = 0; s->dca_chan[j].transition_mode[k] = 0;
if (s->subsubframes[s->current_subframe] > 1 && if (s->subsubframes[s->current_subframe] > 1 &&
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) { k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].bitalloc[k] > 0) {
s->transition_mode[j][k] = s->dca_chan[j].transition_mode[k] =
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]); get_bitalloc(&s->gb, &dca_tmode, s->audio_header.transient_huffman[j]);
} }
} }
} }
...@@ -425,14 +429,14 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index) ...@@ -425,14 +429,14 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
if (get_bits_left(&s->gb) < 0) if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
const uint32_t *scale_table; const uint32_t *scale_table;
int scale_sum, log_size; int scale_sum, log_size;
memset(s->scale_factor[j], 0, memset(s->dca_chan[j].scale_factor, 0,
s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2); s->audio_header.subband_activity[j] * sizeof(s->dca_chan[j].scale_factor[0][0]) * 2);
if (s->scalefactor_huffman[j] == 6) { if (s->audio_header.scalefactor_huffman[j] == 6) {
scale_table = ff_dca_scale_factor_quant7; scale_table = ff_dca_scale_factor_quant7;
log_size = 7; log_size = 7;
} else { } else {
...@@ -443,45 +447,46 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index) ...@@ -443,45 +447,46 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
/* When huffman coded, only the difference is encoded */ /* When huffman coded, only the difference is encoded */
scale_sum = 0; scale_sum = 0;
for (k = 0; k < s->subband_activity[j]; k++) { for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) { if (k >= s->audio_header.vq_start_subband[j] || s->dca_chan[j].bitalloc[k] > 0) {
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size); scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
s->scale_factor[j][k][0] = scale_table[scale_sum]; s->dca_chan[j].scale_factor[k][0] = scale_table[scale_sum];
} }
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) { if (k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].transition_mode[k]) {
/* Get second scale factor */ /* Get second scale factor */
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size); scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
s->scale_factor[j][k][1] = scale_table[scale_sum]; s->dca_chan[j].scale_factor[k][1] = scale_table[scale_sum];
} }
} }
} }
/* Joint subband scale factor codebook select */ /* Joint subband scale factor codebook select */
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
/* Transmitted only if joint subband coding enabled */ /* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0) if (s->audio_header.joint_intensity[j] > 0)
s->joint_huff[j] = get_bits(&s->gb, 3); s->dca_chan[j].joint_huff = get_bits(&s->gb, 3);
} }
if (get_bits_left(&s->gb) < 0) if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
/* Scale factors for joint subband coding */ /* Scale factors for joint subband coding */
for (j = base_channel; j < s->prim_channels; j++) { for (j = base_channel; j < s->audio_header.prim_channels; j++) {
int source_channel; int source_channel;
/* Transmitted only if joint subband coding enabled */ /* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0) { if (s->audio_header.joint_intensity[j] > 0) {
int scale = 0; int scale = 0;
source_channel = s->joint_intensity[j] - 1; source_channel = s->audio_header.joint_intensity[j] - 1;
/* When huffman coded, only the difference is encoded /* When huffman coded, only the difference is encoded
* (is this valid as well for joint scales ???) */ * (is this valid as well for joint scales ???) */
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) { for (k = s->audio_header.subband_activity[j];
scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7); k < s->audio_header.subband_activity[source_channel]; k++) {
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */ scale = get_scale(&s->gb, s->dca_chan[j].joint_huff, 64 /* bias */, 7);
s->dca_chan[j].joint_scale_factor[k] = scale; /*joint_scale_table[scale]; */
} }
if (!(s->debug_flag & 0x02)) { if (!(s->debug_flag & 0x02)) {
...@@ -506,10 +511,10 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index) ...@@ -506,10 +511,10 @@ static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
*/ */
/* VQ encoded high frequency subbands */ /* VQ encoded high frequency subbands */
for (j = base_channel; j < s->prim_channels; j++) for (j = base_channel; j < s->audio_header.prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++) for (k = s->audio_header.vq_start_subband[j]; k < s->audio_header.subband_activity[j]; k++)
/* 1 vector -> 32 samples */ /* 1 vector -> 32 samples */
s->high_freq_vq[j][k] = get_bits(&s->gb, 10); s->dca_chan[j].high_freq_vq[k] = get_bits(&s->gb, 10);
/* Low frequency effect data */ /* Low frequency effect data */
if (!base_channel && s->lfe) { if (!base_channel && s->lfe) {
...@@ -543,7 +548,7 @@ static void qmf_32_subbands(DCAContext *s, int chans, ...@@ -543,7 +548,7 @@ static void qmf_32_subbands(DCAContext *s, int chans,
{ {
const float *prCoeff; const float *prCoeff;
int sb_act = s->subband_activity[chans]; int sb_act = s->audio_header.subband_activity[chans];
scale *= sqrt(1 / 8.0); scale *= sqrt(1 / 8.0);
...@@ -554,9 +559,9 @@ static void qmf_32_subbands(DCAContext *s, int chans, ...@@ -554,9 +559,9 @@ static void qmf_32_subbands(DCAContext *s, int chans,
prCoeff = ff_dca_fir_32bands_perfect; prCoeff = ff_dca_fir_32bands_perfect;
s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct, s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
s->subband_fir_hist[chans], s->dca_chan[chans].subband_fir_hist,
&s->hist_index[chans], &s->dca_chan[chans].hist_index,
s->subband_fir_noidea[chans], prCoeff, s->dca_chan[chans].subband_fir_noidea, prCoeff,
samples_out, s->raXin, scale); samples_out, s->raXin, scale);
} }
...@@ -591,14 +596,14 @@ static void qmf_64_subbands(DCAContext *s, int chans, float samples_in[64][SAMPL ...@@ -591,14 +596,14 @@ static void qmf_64_subbands(DCAContext *s, int chans, float samples_in[64][SAMPL
{ {
float raXin[64]; float raXin[64];
float A[32], B[32]; float A[32], B[32];
float *raX = s->subband_fir_hist[chans]; float *raX = s->dca_chan[chans].subband_fir_hist;
float *raZ = s->subband_fir_noidea[chans]; float *raZ = s->dca_chan[chans].subband_fir_noidea;
unsigned i, j, k, subindex; unsigned i, j, k, subindex;
for (i = s->subband_activity[chans]; i < 64; i++) for (i = s->audio_header.subband_activity[chans]; i < 64; i++)
raXin[i] = 0.0; raXin[i] = 0.0;
for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) { for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) {
for (i = 0; i < s->subband_activity[chans]; i++) for (i = 0; i < s->audio_header.subband_activity[chans]; i++)
raXin[i] = samples_in[i][subindex]; raXin[i] = samples_in[i][subindex];
for (k = 0; k < 32; k++) { for (k = 0; k < 32; k++) {
...@@ -787,8 +792,6 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -787,8 +792,6 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
const float *quant_step_table; const float *quant_step_table;
/* FIXME */
float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = s->subband_samples[block_index];
LOCAL_ALIGNED_16(int32_t, block, [SAMPLES_PER_SUBBAND * DCA_SUBBANDS]); LOCAL_ALIGNED_16(int32_t, block, [SAMPLES_PER_SUBBAND * DCA_SUBBANDS]);
/* /*
...@@ -801,17 +804,18 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -801,17 +804,18 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
else else
quant_step_table = ff_dca_lossy_quant_d; quant_step_table = ff_dca_lossy_quant_d;
for (k = base_channel; k < s->prim_channels; k++) { for (k = base_channel; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[8] = s->dca_chan[k].subband_samples[block_index];
float rscale[DCA_SUBBANDS]; float rscale[DCA_SUBBANDS];
if (get_bits_left(&s->gb) < 0) if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
for (l = 0; l < s->vq_start_subband[k]; l++) { for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
int m; int m;
/* Select the mid-tread linear quantizer */ /* Select the mid-tread linear quantizer */
int abits = s->bitalloc[k][l]; int abits = s->dca_chan[k].bitalloc[l];
float quant_step_size = quant_step_table[abits]; float quant_step_size = quant_step_table[abits];
...@@ -820,7 +824,7 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -820,7 +824,7 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
*/ */
/* Select quantization index code book */ /* Select quantization index code book */
int sel = s->quant_index_huffman[k][abits]; int sel = s->audio_header.quant_index_huffman[k][abits];
/* /*
* Extract bits from the bit stream * Extract bits from the bit stream
...@@ -830,9 +834,10 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -830,9 +834,10 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
memset(block + SAMPLES_PER_SUBBAND * l, 0, SAMPLES_PER_SUBBAND * sizeof(block[0])); memset(block + SAMPLES_PER_SUBBAND * l, 0, SAMPLES_PER_SUBBAND * sizeof(block[0]));
} else { } else {
/* Deal with transients */ /* Deal with transients */
int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l]; int sfi = s->dca_chan[k].transition_mode[l] &&
rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] * subsubframe >= s->dca_chan[k].transition_mode[l];
s->scalefactor_adj[k][sel]; rscale[l] = quant_step_size * s->dca_chan[k].scale_factor[l][sfi] *
s->audio_header.scalefactor_adj[k][sel];
if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) { if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
if (abits <= 7) { if (abits <= 7) {
...@@ -865,54 +870,61 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -865,54 +870,61 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
} }
} }
s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0], s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[0],
block, rscale, SAMPLES_PER_SUBBAND * s->vq_start_subband[k]); block, rscale, SAMPLES_PER_SUBBAND * s->audio_header.vq_start_subband[k]);
for (l = 0; l < s->vq_start_subband[k]; l++) { for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
int m; int m;
/* /*
* Inverse ADPCM if in prediction mode * Inverse ADPCM if in prediction mode
*/ */
if (s->prediction_mode[k][l]) { if (s->dca_chan[k].prediction_mode[l]) {
int n; int n;
if (s->predictor_history) if (s->predictor_history)
subband_samples[k][l][0] += (ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] * subband_samples[l][0] += (ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
s->subband_samples_hist[k][l][3] + s->dca_chan[k].subband_samples_hist[l][3] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] * ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][1] *
s->subband_samples_hist[k][l][2] + s->dca_chan[k].subband_samples_hist[l][2] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] * ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][2] *
s->subband_samples_hist[k][l][1] + s->dca_chan[k].subband_samples_hist[l][1] +
ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] * ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][3] *
s->subband_samples_hist[k][l][0]) * s->dca_chan[k].subband_samples_hist[l][0]) *
(1.0f / 8192); (1.0f / 8192);
for (m = 1; m < SAMPLES_PER_SUBBAND; m++) { for (m = 1; m < SAMPLES_PER_SUBBAND; m++) {
float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] * float sum = ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
subband_samples[k][l][m - 1]; subband_samples[l][m - 1];
for (n = 2; n <= 4; n++) for (n = 2; n <= 4; n++)
if (m >= n) if (m >= n)
sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] * sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
subband_samples[k][l][m - n]; subband_samples[l][m - n];
else if (s->predictor_history) else if (s->predictor_history)
sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] * sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
s->subband_samples_hist[k][l][m - n + 4]; s->dca_chan[k].subband_samples_hist[l][m - n + 4];
subband_samples[k][l][m] += sum * 1.0f / 8192; subband_samples[l][m] += sum * 1.0f / 8192;
} }
} }
} }
/* Backup predictor history for adpcm */
for (l = 0; l < DCA_SUBBANDS; l++)
AV_COPY128(s->dca_chan[k].subband_samples_hist[l], &subband_samples[l][4]);
/* /*
* Decode VQ encoded high frequencies * Decode VQ encoded high frequencies
*/ */
if (s->subband_activity[k] > s->vq_start_subband[k]) { if (s->audio_header.subband_activity[k] > s->audio_header.vq_start_subband[k]) {
if (!s->debug_flag & 0x01) { if (!s->debug_flag & 0x01) {
av_log(s->avctx, AV_LOG_DEBUG, av_log(s->avctx, AV_LOG_DEBUG,
"Stream with high frequencies VQ coding\n"); "Stream with high frequencies VQ coding\n");
s->debug_flag |= 0x01; s->debug_flag |= 0x01;
} }
s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
s->dcadsp.decode_hf(subband_samples, s->dca_chan[k].high_freq_vq,
ff_dca_high_freq_vq, subsubframe * SAMPLES_PER_SUBBAND, ff_dca_high_freq_vq, subsubframe * SAMPLES_PER_SUBBAND,
s->scale_factor[k], s->vq_start_subband[k], s->dca_chan[k].scale_factor,
s->subband_activity[k]); s->audio_header.vq_start_subband[k],
s->audio_header.subband_activity[k]);
} }
} }
...@@ -924,17 +936,11 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) ...@@ -924,17 +936,11 @@ static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
} }
} }
/* Backup predictor history for adpcm */
for (k = base_channel; k < s->prim_channels; k++)
for (l = 0; l < s->vq_start_subband[k]; l++)
AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
return 0; return 0;
} }
static int dca_filter_channels(DCAContext *s, int block_index, int upsample) static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
{ {
float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = s->subband_samples[block_index];
int k; int k;
if (upsample) { if (upsample) {
...@@ -945,18 +951,22 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample) ...@@ -945,18 +951,22 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
} }
/* 64 subbands QMF */ /* 64 subbands QMF */
for (k = 0; k < s->prim_channels; k++) { for (k = 0; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[SAMPLES_PER_SUBBAND] = s->dca_chan[k].subband_samples[block_index];
if (s->channel_order_tab[k] >= 0) if (s->channel_order_tab[k] >= 0)
qmf_64_subbands(s, k, subband_samples[k], qmf_64_subbands(s, k, subband_samples,
s->samples_chanptr[s->channel_order_tab[k]], s->samples_chanptr[s->channel_order_tab[k]],
/* Upsampling needs a factor 2 here. */ /* Upsampling needs a factor 2 here. */
M_SQRT2 / 32768.0); M_SQRT2 / 32768.0);
} }
} else { } else {
/* 32 subbands QMF */ /* 32 subbands QMF */
for (k = 0; k < s->prim_channels; k++) { for (k = 0; k < s->audio_header.prim_channels; k++) {
float (*subband_samples)[SAMPLES_PER_SUBBAND] = s->dca_chan[k].subband_samples[block_index];
if (s->channel_order_tab[k] >= 0) if (s->channel_order_tab[k] >= 0)
qmf_32_subbands(s, k, subband_samples[k], qmf_32_subbands(s, k, subband_samples,
s->samples_chanptr[s->channel_order_tab[k]], s->samples_chanptr[s->channel_order_tab[k]],
M_SQRT1_2 / 32768.0); M_SQRT1_2 / 32768.0);
} }
...@@ -983,7 +993,7 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample) ...@@ -983,7 +993,7 @@ static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
/* FIXME: This downmixing is probably broken with upsample. /* FIXME: This downmixing is probably broken with upsample.
* Probably totally broken also with XLL in general. */ * Probably totally broken also with XLL in general. */
/* Downmixing to Stereo */ /* Downmixing to Stereo */
if (s->prim_channels + !!s->lfe > 2 && if (s->audio_header.prim_channels + !!s->lfe > 2 &&
s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) { s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef, dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
s->channel_order_tab); s->channel_order_tab);
...@@ -1060,7 +1070,7 @@ static int dca_subframe_footer(DCAContext *s, int base_channel) ...@@ -1060,7 +1070,7 @@ static int dca_subframe_footer(DCAContext *s, int base_channel)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) { for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
for (in = 0; in < s->prim_channels + !!s->lfe; in++) { for (in = 0; in < s->audio_header.prim_channels + !!s->lfe; in++) {
uint16_t tmp = get_bits(&s->gb, 9); uint16_t tmp = get_bits(&s->gb, 9);
if ((tmp & 0xFF) > 241) { if ((tmp & 0xFF) > 241) {
av_log(s->avctx, AV_LOG_ERROR, av_log(s->avctx, AV_LOG_ERROR,
...@@ -1106,9 +1116,9 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index) ...@@ -1106,9 +1116,9 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
int ret; int ret;
/* Sanity check */ /* Sanity check */
if (s->current_subframe >= s->subframes) { if (s->current_subframe >= s->audio_header.subframes) {
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i", av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
s->current_subframe, s->subframes); s->current_subframe, s->audio_header.subframes);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
...@@ -1128,7 +1138,7 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index) ...@@ -1128,7 +1138,7 @@ static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
s->current_subsubframe = 0; s->current_subsubframe = 0;
s->current_subframe++; s->current_subframe++;
} }
if (s->current_subframe >= s->subframes) { if (s->current_subframe >= s->audio_header.subframes) {
/* Read subframe footer */ /* Read subframe footer */
if ((ret = dca_subframe_footer(s, base_channel))) if ((ret = dca_subframe_footer(s, base_channel)))
return ret; return ret;
...@@ -1169,7 +1179,7 @@ static int scan_for_extensions(AVCodecContext *avctx) ...@@ -1169,7 +1179,7 @@ static int scan_for_extensions(AVCodecContext *avctx)
case DCA_SYNCWORD_XCH: { case DCA_SYNCWORD_XCH: {
int ext_amode, xch_fsize; int ext_amode, xch_fsize;
s->xch_base_channel = s->prim_channels; s->xch_base_channel = s->audio_header.prim_channels;
/* validate sync word using XCHFSIZE field */ /* validate sync word using XCHFSIZE field */
xch_fsize = show_bits(&s->gb, 10); xch_fsize = show_bits(&s->gb, 10);
...@@ -1254,7 +1264,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_ ...@@ -1254,7 +1264,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (s->amode < 16) { if (s->amode < 16) {
avctx->channel_layout = dca_core_channel_layout[s->amode]; avctx->channel_layout = dca_core_channel_layout[s->amode];
if (s->prim_channels + !!s->lfe > 2 && if (s->audio_header.prim_channels + !!s->lfe > 2 &&
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) { avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
/* /*
* Neither the core's auxiliary data nor our default tables contain * Neither the core's auxiliary data nor our default tables contain
...@@ -1289,7 +1299,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_ ...@@ -1289,7 +1299,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (num_core_channels + !!s->lfe > 2 && if (num_core_channels + !!s->lfe > 2 &&
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) { avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
channels = 2; channels = 2;
s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO; s->output = s->audio_header.prim_channels == 2 ? s->amode : DCA_STEREO;
avctx->channel_layout = AV_CH_LAYOUT_STEREO; avctx->channel_layout = AV_CH_LAYOUT_STEREO;
/* Stereo downmix coefficients /* Stereo downmix coefficients
...@@ -1315,7 +1325,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_ ...@@ -1315,7 +1325,7 @@ static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_
if (num_core_channels + !!s->lfe > if (num_core_channels + !!s->lfe >
FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) { FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
avpriv_request_sample(s->avctx, "Downmixing %d channels", avpriv_request_sample(s->avctx, "Downmixing %d channels",
s->prim_channels + !!s->lfe); s->audio_header.prim_channels + !!s->lfe);
return AVERROR_PATCHWELCOME; return AVERROR_PATCHWELCOME;
} }
for (i = 0; i < num_core_channels + !!s->lfe; i++) { for (i = 0; i < num_core_channels + !!s->lfe; i++) {
...@@ -1387,7 +1397,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data, ...@@ -1387,7 +1397,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data,
} }
/* record number of core channels incase less than max channels are requested */ /* record number of core channels incase less than max channels are requested */
num_core_channels = s->prim_channels; num_core_channels = s->audio_header.prim_channels;
if (s->ext_coding) if (s->ext_coding)
s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr]; s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
...@@ -1398,7 +1408,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data, ...@@ -1398,7 +1408,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void *data,
avctx->profile = s->profile; avctx->profile = s->profile;
full_channels = channels = s->prim_channels + !!s->lfe; full_channels = channels = s->audio_header.prim_channels + !!s->lfe;
ret = set_channel_layout(avctx, channels, num_core_channels); ret = set_channel_layout(avctx, channels, num_core_channels);
if (ret < 0) if (ret < 0)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment