Commit 51027d0b authored by Rostislav Pehlivanov's avatar Rostislav Pehlivanov

opus: merge encoder and decoder bitallocation functions into one

There's no difference apart from which entropy coding functions get called.
Signed-off-by: 's avatarRostislav Pehlivanov <atomnuker@gmail.com>
parent 0c78b6a4
......@@ -546,3 +546,351 @@ void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
update_lowband = (b > band_size << 3);
}
}
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
{
int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
int skip_startband = f->start_band;
int skip_bit = 0;
int intensitystereo_bit = 0;
int dualstereo_bit = 0;
int dynalloc = 6;
int extrabits = 0;
int boost[CELT_MAX_BANDS] = { 0 };
int trim_offset[CELT_MAX_BANDS];
int threshold[CELT_MAX_BANDS];
int bits1[CELT_MAX_BANDS];
int bits2[CELT_MAX_BANDS];
/* Spread */
if (opus_rc_tell(rc) + 4 <= f->framebits)
if (encode)
ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
else
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
else
f->spread = CELT_SPREAD_NORMAL;
/* Initialize static allocation caps */
for (i = 0; i < CELT_MAX_BANDS; i++)
f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
/* Band boosts */
tbits_8ths = f->framebits << 3;
for (i = f->start_band; i < f->end_band; i++) {
int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
int b_dynalloc = dynalloc;
int boost_amount = f->alloc_boost[i];
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
int is_boost;
if (encode) {
is_boost = boost_amount--;
ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
} else {
is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
}
if (!is_boost)
break;
boost[i] += quanta;
tbits_8ths -= quanta;
b_dynalloc = 1;
}
if (boost[i])
dynalloc = FFMAX(dynalloc - 1, 2);
}
/* Allocation trim */
if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
if (encode)
ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
else
f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
/* Anti-collapse bit reservation */
tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
f->anticollapse_needed = 0;
if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
f->anticollapse_needed = 1 << 3;
tbits_8ths -= f->anticollapse_needed;
/* Band skip bit reservation */
if (tbits_8ths >= 1 << 3)
skip_bit = 1 << 3;
tbits_8ths -= skip_bit;
/* Intensity/dual stereo bit reservation */
if (f->channels == 2) {
intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
if (intensitystereo_bit <= tbits_8ths) {
tbits_8ths -= intensitystereo_bit;
if (tbits_8ths >= 1 << 3) {
dualstereo_bit = 1 << 3;
tbits_8ths -= 1 << 3;
}
} else {
intensitystereo_bit = 0;
}
}
/* Trim offsets */
for (i = f->start_band; i < f->end_band; i++) {
int trim = f->alloc_trim - 5 - f->size;
int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
int duration = f->size + 3;
int scale = duration + f->channels - 1;
/* PVQ minimum allocation threshold, below this value the band is
* skipped */
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
f->channels << 3);
trim_offset[i] = trim * (band << scale) >> 6;
if (ff_celt_freq_range[i] << f->size == 1)
trim_offset[i] -= f->channels << 3;
}
/* Bisection */
low = 1;
high = CELT_VECTORS - 1;
while (low <= high) {
int center = (low + high) >> 1;
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
if (bandbits)
bandbits = FFMAX(bandbits + trim_offset[i], 0);
bandbits += boost[i];
if (bandbits >= threshold[i] || done) {
done = 1;
total += FFMIN(bandbits, f->caps[i]);
} else if (bandbits >= f->channels << 3) {
total += f->channels << 3;
}
}
if (total > tbits_8ths)
high = center - 1;
else
low = center + 1;
}
high = low--;
/* Bisection */
for (i = f->start_band; i < f->end_band; i++) {
bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
if (bits1[i])
bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
if (bits2[i])
bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
if (low)
bits1[i] += boost[i];
bits2[i] += boost[i];
if (boost[i])
skip_startband = i;
bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
}
/* Bisection */
low = 0;
high = 1 << CELT_ALLOC_STEPS;
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
int center = (low + high) >> 1;
done = total = 0;
for (j = f->end_band - 1; j >= f->start_band; j--) {
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[j] || done) {
done = 1;
total += FFMIN(bandbits, f->caps[j]);
} else if (bandbits >= f->channels << 3)
total += f->channels << 3;
}
if (total > tbits_8ths)
high = center;
else
low = center;
}
/* Bisection */
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[i] || done)
done = 1;
else
bandbits = (bandbits >= f->channels << 3) ?
f->channels << 3 : 0;
bandbits = FFMIN(bandbits, f->caps[i]);
f->pulses[i] = bandbits;
total += bandbits;
}
/* Band skipping */
for (f->coded_bands = f->end_band; ; f->coded_bands--) {
int allocation;
j = f->coded_bands - 1;
if (j == skip_startband) {
/* all remaining bands are not skipped */
tbits_8ths += skip_bit;
break;
}
/* determine the number of bits available for coding "do not skip" markers */
remaining = tbits_8ths - total;
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j];
allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
/* a "do not skip" marker is only coded if the allocation is
* above the chosen threshold */
if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
int do_not_skip;
if (encode) {
do_not_skip = f->coded_bands <= f->skip_band_floor;
ff_opus_rc_enc_log(rc, do_not_skip, 1);
} else {
do_not_skip = ff_opus_rc_dec_log(rc, 1);
}
if (do_not_skip)
break;
total += 1 << 3;
allocation -= 1 << 3;
}
/* the band is skipped, so reclaim its bits */
total -= f->pulses[j];
if (intensitystereo_bit) {
total -= intensitystereo_bit;
intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
total += intensitystereo_bit;
}
total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
}
/* IS start band */
if (encode) {
if (intensitystereo_bit) {
f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
}
} else {
f->intensity_stereo = f->dual_stereo = 0;
if (intensitystereo_bit)
f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
}
/* DS flag */
if (f->intensity_stereo <= f->start_band)
tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
else if (dualstereo_bit)
if (encode)
ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
else
f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
/* Supply the remaining bits in this frame to lower bands */
remaining = tbits_8ths - total;
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
for (i = f->start_band; i < f->coded_bands; i++) {
const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
remaining -= bits;
}
/* Finally determine the allocation */
for (i = f->start_band; i < f->coded_bands; i++) {
int N = ff_celt_freq_range[i] << f->size;
int prev_extra = extrabits;
f->pulses[i] += extrabits;
if (N > 1) {
int dof; /* degrees of freedom */
int temp; /* dof * channels * log(dof) */
int fine_bits;
int max_bits;
int offset; /* fine energy quantization offset, i.e.
* extra bits assigned over the standard
* totalbits/dof */
extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
f->pulses[i] -= extrabits;
/* intensity stereo makes use of an extra degree of freedom */
dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
offset += dof << 1;
/* grant an additional bias for the first and second pulses */
if (f->pulses[i] + offset < 2 * (dof << 3))
offset += temp >> 2;
else if (f->pulses[i] + offset < 3 * (dof << 3))
offset += temp >> 3;
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
max_bits = FFMAX(max_bits, 0);
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
/* If fine_bits was rounded down or capped,
* give priority for the final fine energy pass */
f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
/* the remaining bits are assigned to PVQ */
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
} else {
/* all bits go to fine energy except for the sign bit */
extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
f->pulses[i] -= extrabits;
f->fine_bits[i] = 0;
f->fine_priority[i] = 1;
}
/* hand back a limited number of extra fine energy bits to this band */
if (extrabits > 0) {
int fineextra = FFMIN(extrabits >> (f->channels + 2),
CELT_MAX_FINE_BITS - f->fine_bits[i]);
f->fine_bits[i] += fineextra;
fineextra <<= f->channels + 2;
f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
extrabits -= fineextra;
}
}
f->remaining = extrabits;
/* skipped bands dedicate all of their bits for fine energy */
for (; i < f->end_band; i++) {
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
f->pulses[i] = 0;
f->fine_priority[i] = f->fine_bits[i] < 1;
}
}
......@@ -194,4 +194,7 @@ int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
/* Encode or decode CELT bands */
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc);
/* Encode or decode CELT bitallocation */
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode);
#endif /* AVCODEC_OPUS_H */
......@@ -143,338 +143,6 @@ static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
}
}
static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc)
{
// approx. maximum bit allocation for each band before boost/trim
int cap[CELT_MAX_BANDS];
int boost[CELT_MAX_BANDS];
int threshold[CELT_MAX_BANDS];
int bits1[CELT_MAX_BANDS];
int bits2[CELT_MAX_BANDS];
int trim_offset[CELT_MAX_BANDS];
int skip_start_band = f->start_band;
int dynalloc = 6;
int alloctrim = 5;
int extrabits = 0;
int skip_bit = 0;
int intensity_stereo_bit = 0;
int dual_stereo_bit = 0;
int remaining, bandbits;
int low, high, total, done;
int totalbits;
int consumed;
int i, j;
consumed = opus_rc_tell(rc);
/* obtain spread flag */
f->spread = CELT_SPREAD_NORMAL;
if (consumed + 4 <= f->framebits)
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
/* generate static allocation caps */
for (i = 0; i < CELT_MAX_BANDS; i++) {
cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
* ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
}
/* obtain band boost */
totalbits = f->framebits << 3; // convert to 1/8 bits
consumed = opus_rc_tell_frac(rc);
for (i = f->start_band; i < f->end_band; i++) {
int quanta, band_dynalloc;
boost[i] = 0;
quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
band_dynalloc = dynalloc;
while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
int add = ff_opus_rc_dec_log(rc, band_dynalloc);
consumed = opus_rc_tell_frac(rc);
if (!add)
break;
boost[i] += quanta;
totalbits -= quanta;
band_dynalloc = 1;
}
/* dynalloc is more likely to occur if it's already been used for earlier bands */
if (boost[i])
dynalloc = FFMAX(2, dynalloc - 1);
}
/* obtain allocation trim */
if (consumed + (6 << 3) <= totalbits)
alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
/* anti-collapse bit reservation */
totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
f->anticollapse_needed = 0;
if (f->blocks > 1 && f->size >= 2 &&
totalbits >= ((f->size + 2) << 3))
f->anticollapse_needed = 1 << 3;
totalbits -= f->anticollapse_needed;
/* band skip bit reservation */
if (totalbits >= 1 << 3)
skip_bit = 1 << 3;
totalbits -= skip_bit;
/* intensity/dual stereo bit reservation */
if (f->channels == 2) {
intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
if (intensity_stereo_bit <= totalbits) {
totalbits -= intensity_stereo_bit;
if (totalbits >= 1 << 3) {
dual_stereo_bit = 1 << 3;
totalbits -= 1 << 3;
}
} else
intensity_stereo_bit = 0;
}
for (i = f->start_band; i < f->end_band; i++) {
int trim = alloctrim - 5 - f->size;
int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
int duration = f->size + 3;
int scale = duration + f->channels - 1;
/* PVQ minimum allocation threshold, below this value the band is
* skipped */
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
f->channels << 3);
trim_offset[i] = trim * (band << scale) >> 6;
if (ff_celt_freq_range[i] << f->size == 1)
trim_offset[i] -= f->channels << 3;
}
/* bisection */
low = 1;
high = CELT_VECTORS - 1;
while (low <= high) {
int center = (low + high) >> 1;
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
<< (f->channels - 1) << f->size >> 2;
if (bandbits)
bandbits = FFMAX(0, bandbits + trim_offset[i]);
bandbits += boost[i];
if (bandbits >= threshold[i] || done) {
done = 1;
total += FFMIN(bandbits, cap[i]);
} else if (bandbits >= f->channels << 3)
total += f->channels << 3;
}
if (total > totalbits)
high = center - 1;
else
low = center + 1;
}
high = low--;
for (i = f->start_band; i < f->end_band; i++) {
bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
<< (f->channels - 1) << f->size >> 2;
bits2[i] = high >= CELT_VECTORS ? cap[i] :
ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
<< (f->channels - 1) << f->size >> 2;
if (bits1[i])
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
if (bits2[i])
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
if (low)
bits1[i] += boost[i];
bits2[i] += boost[i];
if (boost[i])
skip_start_band = i;
bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
}
/* bisection */
low = 0;
high = 1 << CELT_ALLOC_STEPS;
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
int center = (low + high) >> 1;
done = total = 0;
for (j = f->end_band - 1; j >= f->start_band; j--) {
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[j] || done) {
done = 1;
total += FFMIN(bandbits, cap[j]);
} else if (bandbits >= f->channels << 3)
total += f->channels << 3;
}
if (total > totalbits)
high = center;
else
low = center;
}
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[i] || done)
done = 1;
else
bandbits = (bandbits >= f->channels << 3) ?
f->channels << 3 : 0;
bandbits = FFMIN(bandbits, cap[i]);
f->pulses[i] = bandbits;
total += bandbits;
}
/* band skipping */
for (f->coded_bands = f->end_band; ; f->coded_bands--) {
int allocation;
j = f->coded_bands - 1;
if (j == skip_start_band) {
/* all remaining bands are not skipped */
totalbits += skip_bit;
break;
}
/* determine the number of bits available for coding "do not skip" markers */
remaining = totalbits - total;
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]
+ FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
/* a "do not skip" marker is only coded if the allocation is
above the chosen threshold */
if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) {
if (ff_opus_rc_dec_log(rc, 1))
break;
total += 1 << 3;
allocation -= 1 << 3;
}
/* the band is skipped, so reclaim its bits */
total -= f->pulses[j];
if (intensity_stereo_bit) {
total -= intensity_stereo_bit;
intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band];
total += intensity_stereo_bit;
}
total += f->pulses[j] = (allocation >= f->channels << 3) ?
f->channels << 3 : 0;
}
/* obtain stereo flags */
f->intensity_stereo = 0;
f->dual_stereo = 0;
if (intensity_stereo_bit)
f->intensity_stereo = f->start_band +
ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
if (f->intensity_stereo <= f->start_band)
totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */
else if (dual_stereo_bit)
f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
/* supply the remaining bits in this frame to lower bands */
remaining = totalbits - total;
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
for (i = f->start_band; i < f->coded_bands; i++) {
int bits = FFMIN(remaining, ff_celt_freq_range[i]);
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
remaining -= bits;
}
for (i = f->start_band; i < f->coded_bands; i++) {
int N = ff_celt_freq_range[i] << f->size;
int prev_extra = extrabits;
f->pulses[i] += extrabits;
if (N > 1) {
int dof; // degrees of freedom
int temp; // dof * channels * log(dof)
int offset; // fine energy quantization offset, i.e.
// extra bits assigned over the standard
// totalbits/dof
int fine_bits, max_bits;
extrabits = FFMAX(0, f->pulses[i] - cap[i]);
f->pulses[i] -= extrabits;
/* intensity stereo makes use of an extra degree of freedom */
dof = N * f->channels
+ (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3));
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
offset += dof<<1;
/* grant an additional bias for the first and second pulses */
if (f->pulses[i] + offset < 2 * (dof << 3))
offset += temp >> 2;
else if (f->pulses[i] + offset < 3 * (dof << 3))
offset += temp >> 3;
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
max_bits = FFMIN((f->pulses[i]>>3) >> (f->channels - 1),
CELT_MAX_FINE_BITS);
max_bits = FFMAX(max_bits, 0);
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
/* if fine_bits was rounded down or capped,
give priority for the final fine energy pass */
f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset);
/* the remaining bits are assigned to PVQ */
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
} else {
/* all bits go to fine energy except for the sign bit */
extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
f->pulses[i] -= extrabits;
f->fine_bits[i] = 0;
f->fine_priority[i] = 1;
}
/* hand back a limited number of extra fine energy bits to this band */
if (extrabits > 0) {
int fineextra = FFMIN(extrabits >> (f->channels + 2),
CELT_MAX_FINE_BITS - f->fine_bits[i]);
f->fine_bits[i] += fineextra;
fineextra <<= f->channels + 2;
f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
extrabits -= fineextra;
}
}
f->remaining = extrabits;
/* skipped bands dedicate all of their bits for fine energy */
for (; i < f->end_band; i++) {
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
f->pulses[i] = 0;
f->fine_priority[i] = f->fine_bits[i] < 1;
}
}
static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
{
int i, j;
......@@ -753,7 +421,7 @@ int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
celt_decode_coarse_energy(f, rc);
celt_decode_tf_changes (f, rc);
celt_decode_allocation (f, rc);
ff_celt_bitalloc (f, rc, 0);
celt_decode_fine_energy (f, rc);
ff_celt_quant_bands (f, rc);
......
......@@ -282,333 +282,6 @@ static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
}
void ff_celt_enc_bitalloc(CeltFrame *f, OpusRangeCoder *rc)
{
int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
int skip_startband = f->start_band;
int skip_bit = 0;
int intensitystereo_bit = 0;
int dualstereo_bit = 0;
int dynalloc = 6;
int extrabits = 0;
int *cap = f->caps;
int boost[CELT_MAX_BANDS];
int trim_offset[CELT_MAX_BANDS];
int threshold[CELT_MAX_BANDS];
int bits1[CELT_MAX_BANDS];
int bits2[CELT_MAX_BANDS];
/* Tell the spread to the decoder */
if (opus_rc_tell(rc) + 4 <= f->framebits)
ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
else
f->spread = CELT_SPREAD_NORMAL;
/* Generate static allocation caps */
for (i = 0; i < CELT_MAX_BANDS; i++) {
cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
* ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
}
/* Band boosts */
tbits_8ths = f->framebits << 3;
for (i = f->start_band; i < f->end_band; i++) {
int quanta, b_dynalloc, boost_amount = f->alloc_boost[i];
boost[i] = 0;
quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
b_dynalloc = dynalloc;
while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < cap[i]) {
int is_boost = boost_amount--;
ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
if (!is_boost)
break;
boost[i] += quanta;
tbits_8ths -= quanta;
b_dynalloc = 1;
}
if (boost[i])
dynalloc = FFMAX(2, dynalloc - 1);
}
/* Put allocation trim */
if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
/* Anti-collapse bit reservation */
tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
f->anticollapse_needed = 0;
if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
f->anticollapse_needed = 1 << 3;
tbits_8ths -= f->anticollapse_needed;
/* Band skip bit reservation */
if (tbits_8ths >= 1 << 3)
skip_bit = 1 << 3;
tbits_8ths -= skip_bit;
/* Intensity/dual stereo bit reservation */
if (f->channels == 2) {
intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
if (intensitystereo_bit <= tbits_8ths) {
tbits_8ths -= intensitystereo_bit;
if (tbits_8ths >= 1 << 3) {
dualstereo_bit = 1 << 3;
tbits_8ths -= 1 << 3;
}
} else {
intensitystereo_bit = 0;
}
}
/* Trim offsets */
for (i = f->start_band; i < f->end_band; i++) {
int trim = f->alloc_trim - 5 - f->size;
int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
int duration = f->size + 3;
int scale = duration + f->channels - 1;
/* PVQ minimum allocation threshold, below this value the band is
* skipped */
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
f->channels << 3);
trim_offset[i] = trim * (band << scale) >> 6;
if (ff_celt_freq_range[i] << f->size == 1)
trim_offset[i] -= f->channels << 3;
}
/* Bisection */
low = 1;
high = CELT_VECTORS - 1;
while (low <= high) {
int center = (low + high) >> 1;
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
<< (f->channels - 1) << f->size >> 2;
if (bandbits)
bandbits = FFMAX(0, bandbits + trim_offset[i]);
bandbits += boost[i];
if (bandbits >= threshold[i] || done) {
done = 1;
total += FFMIN(bandbits, cap[i]);
} else if (bandbits >= f->channels << 3)
total += f->channels << 3;
}
if (total > tbits_8ths)
high = center - 1;
else
low = center + 1;
}
high = low--;
/* Bisection */
for (i = f->start_band; i < f->end_band; i++) {
bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
<< (f->channels - 1) << f->size >> 2;
bits2[i] = high >= CELT_VECTORS ? cap[i] :
ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
<< (f->channels - 1) << f->size >> 2;
if (bits1[i])
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
if (bits2[i])
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
if (low)
bits1[i] += boost[i];
bits2[i] += boost[i];
if (boost[i])
skip_startband = i;
bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
}
/* Bisection */
low = 0;
high = 1 << CELT_ALLOC_STEPS;
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
int center = (low + high) >> 1;
done = total = 0;
for (j = f->end_band - 1; j >= f->start_band; j--) {
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[j] || done) {
done = 1;
total += FFMIN(bandbits, cap[j]);
} else if (bandbits >= f->channels << 3)
total += f->channels << 3;
}
if (total > tbits_8ths)
high = center;
else
low = center;
}
/* Bisection */
done = total = 0;
for (i = f->end_band - 1; i >= f->start_band; i--) {
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
if (bandbits >= threshold[i] || done)
done = 1;
else
bandbits = (bandbits >= f->channels << 3) ?
f->channels << 3 : 0;
bandbits = FFMIN(bandbits, cap[i]);
f->pulses[i] = bandbits;
total += bandbits;
}
/* Band skipping */
for (f->coded_bands = f->end_band; ; f->coded_bands--) {
int allocation;
j = f->coded_bands - 1;
if (j == skip_startband) {
/* all remaining bands are not skipped */
tbits_8ths += skip_bit;
break;
}
/* determine the number of bits available for coding "do not skip" markers */
remaining = tbits_8ths - total;
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]
+ FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
/* a "do not skip" marker is only coded if the allocation is
above the chosen threshold */
if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
const int do_not_skip = f->coded_bands <= f->skip_band_floor;
ff_opus_rc_enc_log(rc, do_not_skip, 1);
if (do_not_skip)
break;
total += 1 << 3;
allocation -= 1 << 3;
}
/* the band is skipped, so reclaim its bits */
total -= f->pulses[j];
if (intensitystereo_bit) {
total -= intensitystereo_bit;
intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
total += intensitystereo_bit;
}
total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
}
/* Encode stereo flags */
if (intensitystereo_bit) {
f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
}
if (f->intensity_stereo <= f->start_band)
tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
else if (dualstereo_bit)
ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
/* Supply the remaining bits in this frame to lower bands */
remaining = tbits_8ths - total;
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
for (i = f->start_band; i < f->coded_bands; i++) {
int bits = FFMIN(remaining, ff_celt_freq_range[i]);
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
remaining -= bits;
}
/* Finally determine the allocation */
for (i = f->start_band; i < f->coded_bands; i++) {
int N = ff_celt_freq_range[i] << f->size;
int prev_extra = extrabits;
f->pulses[i] += extrabits;
if (N > 1) {
int dof; // degrees of freedom
int temp; // dof * channels * log(dof)
int offset; // fine energy quantization offset, i.e.
// extra bits assigned over the standard
// totalbits/dof
int fine_bits, max_bits;
extrabits = FFMAX(0, f->pulses[i] - cap[i]);
f->pulses[i] -= extrabits;
/* intensity stereo makes use of an extra degree of freedom */
dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
offset += dof << 1;
/* grant an additional bias for the first and second pulses */
if (f->pulses[i] + offset < 2 * (dof << 3))
offset += temp >> 2;
else if (f->pulses[i] + offset < 3 * (dof << 3))
offset += temp >> 3;
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
max_bits = FFMAX(max_bits, 0);
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
/* if fine_bits was rounded down or capped,
give priority for the final fine energy pass */
f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
/* the remaining bits are assigned to PVQ */
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
} else {
/* all bits go to fine energy except for the sign bit */
extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
f->pulses[i] -= extrabits;
f->fine_bits[i] = 0;
f->fine_priority[i] = 1;
}
/* hand back a limited number of extra fine energy bits to this band */
if (extrabits > 0) {
int fineextra = FFMIN(extrabits >> (f->channels + 2),
CELT_MAX_FINE_BITS - f->fine_bits[i]);
f->fine_bits[i] += fineextra;
fineextra <<= f->channels + 2;
f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
extrabits -= fineextra;
}
}
f->remaining = extrabits;
/* skipped bands dedicate all of their bits for fine energy */
for (; i < f->end_band; i++) {
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
f->pulses[i] = 0;
f->fine_priority[i] = f->fine_bits[i] < 1;
}
}
static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
{
float gain = f->pf_gain;
......@@ -794,11 +467,11 @@ static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc,
ff_opus_rc_enc_log(rc, f->transient, 3);
/* Main encoding */
celt_quant_coarse (f, rc, s->last_quantized_energy);
celt_enc_tf (f, rc);
ff_celt_enc_bitalloc(f, rc);
celt_quant_fine (f, rc);
ff_celt_quant_bands (f, rc);
celt_quant_coarse (f, rc, s->last_quantized_energy);
celt_enc_tf (f, rc);
ff_celt_bitalloc (f, rc, 1);
celt_quant_fine (f, rc);
ff_celt_quant_bands(f, rc);
/* Anticollapse bit */
if (f->anticollapse_needed)
......
......@@ -51,6 +51,4 @@ typedef struct OpusPacketInfo {
int frames;
} OpusPacketInfo;
void ff_celt_enc_bitalloc(CeltFrame *f, OpusRangeCoder *rc);
#endif /* AVCODEC_OPUSENC_H */
......@@ -366,7 +366,7 @@ static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist)
OpusRangeCoder dump;
ff_opus_rc_enc_init(&dump);
ff_celt_enc_bitalloc(f, &dump);
ff_celt_bitalloc(f, &dump, 1);
for (i = 0; i < CELT_MAX_BANDS; i++) {
float bits = 0.0f;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment