Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
F
ffmpeg.wasm-core
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Linshizhi
ffmpeg.wasm-core
Commits
4d9d9a44
Commit
4d9d9a44
authored
Mar 03, 2011
by
Andreas Öman
Committed by
Mashiat Sarker Shakkhar
Nov 20, 2011
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
wmall: Working bitstream parser
parent
c40e1757
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1172 additions
and
0 deletions
+1172
-0
Makefile
libavcodec/Makefile
+1
-0
allcodecs.c
libavcodec/allcodecs.c
+1
-0
wmalosslessdec.c
libavcodec/wmalosslessdec.c
+1170
-0
No files found.
libavcodec/Makefile
View file @
4d9d9a44
...
...
@@ -408,6 +408,7 @@ OBJS-$(CONFIG_VP6_DECODER) += vp6.o vp56.o vp56data.o vp56dsp.o \
OBJS-$(CONFIG_VP8_DECODER)
+=
vp8.o
vp8dsp.o
vp56rac.o
OBJS-$(CONFIG_VQA_DECODER)
+=
vqavideo.o
OBJS-$(CONFIG_WAVPACK_DECODER)
+=
wavpack.o
OBJS-$(CONFIG_WMALOSSLESS_DECODER)
+=
wmalosslessdec.o
wma.o
OBJS-$(CONFIG_WMAPRO_DECODER)
+=
wmaprodec.o
wma.o
OBJS-$(CONFIG_WMAV1_DECODER)
+=
wmadec.o
wma.o
aactab.o
OBJS-$(CONFIG_WMAV1_ENCODER)
+=
wmaenc.o
wma.o
aactab.o
...
...
libavcodec/allcodecs.c
View file @
4d9d9a44
...
...
@@ -284,6 +284,7 @@ void avcodec_register_all(void)
REGISTER_DECODER
(
VMDAUDIO
,
vmdaudio
);
REGISTER_ENCDEC
(
VORBIS
,
vorbis
);
REGISTER_DECODER
(
WAVPACK
,
wavpack
);
REGISTER_DECODER
(
WMALOSSLESS
,
wmalossless
);
REGISTER_DECODER
(
WMAPRO
,
wmapro
);
REGISTER_ENCDEC
(
WMAV1
,
wmav1
);
REGISTER_ENCDEC
(
WMAV2
,
wmav2
);
...
...
libavcodec/wmalosslessdec.c
0 → 100644
View file @
4d9d9a44
/*
* Wmall compatible decoder
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
* Copyright (c) 2011 Andreas Öman
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* @brief wmall decoder implementation
* Wmall is an MDCT based codec comparable to wma standard or AAC.
* The decoding therefore consists of the following steps:
* - bitstream decoding
* - reconstruction of per-channel data
* - rescaling and inverse quantization
* - IMDCT
* - windowing and overlapp-add
*
* The compressed wmall bitstream is split into individual packets.
* Every such packet contains one or more wma frames.
* The compressed frames may have a variable length and frames may
* cross packet boundaries.
* Common to all wmall frames is the number of samples that are stored in
* a frame.
* The number of samples and a few other decode flags are stored
* as extradata that has to be passed to the decoder.
*
* The wmall frames themselves are again split into a variable number of
* subframes. Every subframe contains the data for 2^N time domain samples
* where N varies between 7 and 12.
*
* Example wmall bitstream (in samples):
*
* || packet 0 || packet 1 || packet 2 packets
* ---------------------------------------------------
* || frame 0 || frame 1 || frame 2 || frames
* ---------------------------------------------------
* || | | || | | | || || subframes of channel 0
* ---------------------------------------------------
* || | | || | | | || || subframes of channel 1
* ---------------------------------------------------
*
* The frame layouts for the individual channels of a wma frame does not need
* to be the same.
*
* However, if the offsets and lengths of several subframes of a frame are the
* same, the subframes of the channels can be grouped.
* Every group may then use special coding techniques like M/S stereo coding
* to improve the compression ratio. These channel transformations do not
* need to be applied to a whole subframe. Instead, they can also work on
* individual scale factor bands (see below).
* The coefficients that carry the audio signal in the frequency domain
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
* In addition to that, the encoder can switch to a runlevel coding scheme
* by transmitting subframe_length / 128 zero coefficients.
*
* Before the audio signal can be converted to the time domain, the
* coefficients have to be rescaled and inverse quantized.
* A subframe is therefore split into several scale factor bands that get
* scaled individually.
* Scale factors are submitted for every frame but they might be shared
* between the subframes of a channel. Scale factors are initially DPCM-coded.
* Once scale factors are shared, the differences are transmitted as runlevel
* codes.
* Every subframe length and offset combination in the frame layout shares a
* common quantization factor that can be adjusted for every channel by a
* modifier.
* After the inverse quantization, the coefficients get processed by an IMDCT.
* The resulting values are then windowed with a sine window and the first half
* of the values are added to the second half of the output from the previous
* subframe in order to reconstruct the output samples.
*/
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dsputil.h"
#include "wma.h"
/** current decoder limitations */
#define WMALL_MAX_CHANNELS 8 ///< max number of handled channels
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
#define MAX_BANDS 29 ///< max number of scale factor bands
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
#define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size
#define WMALL_BLOCK_MAX_BITS 12 ///< log2 of max block size
#define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size
#define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes
#define VLCBITS 9
#define SCALEVLCBITS 8
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
static
float
sin64
[
33
];
///< sinus table for decorrelation
/**
* @brief frame specific decoder context for a single channel
*/
typedef
struct
{
int16_t
prev_block_len
;
///< length of the previous block
uint8_t
transmit_coefs
;
uint8_t
num_subframes
;
uint16_t
subframe_len
[
MAX_SUBFRAMES
];
///< subframe length in samples
uint16_t
subframe_offset
[
MAX_SUBFRAMES
];
///< subframe positions in the current frame
uint8_t
cur_subframe
;
///< current subframe number
uint16_t
decoded_samples
;
///< number of already processed samples
uint8_t
grouped
;
///< channel is part of a group
int
quant_step
;
///< quantization step for the current subframe
int8_t
reuse_sf
;
///< share scale factors between subframes
int8_t
scale_factor_step
;
///< scaling step for the current subframe
int
max_scale_factor
;
///< maximum scale factor for the current subframe
int
saved_scale_factors
[
2
][
MAX_BANDS
];
///< resampled and (previously) transmitted scale factor values
int8_t
scale_factor_idx
;
///< index for the transmitted scale factor values (used for resampling)
int
*
scale_factors
;
///< pointer to the scale factor values used for decoding
uint8_t
table_idx
;
///< index in sf_offsets for the scale factor reference block
float
*
coeffs
;
///< pointer to the subframe decode buffer
uint16_t
num_vec_coeffs
;
///< number of vector coded coefficients
DECLARE_ALIGNED
(
16
,
float
,
out
)[
WMALL_BLOCK_MAX_SIZE
+
WMALL_BLOCK_MAX_SIZE
/
2
];
///< output buffer
}
WmallChannelCtx
;
/**
* @brief channel group for channel transformations
*/
typedef
struct
{
uint8_t
num_channels
;
///< number of channels in the group
int8_t
transform
;
///< transform on / off
int8_t
transform_band
[
MAX_BANDS
];
///< controls if the transform is enabled for a certain band
float
decorrelation_matrix
[
WMALL_MAX_CHANNELS
*
WMALL_MAX_CHANNELS
];
float
*
channel_data
[
WMALL_MAX_CHANNELS
];
///< transformation coefficients
}
WmallChannelGrp
;
/**
* @brief main decoder context
*/
typedef
struct
WmallDecodeCtx
{
/* generic decoder variables */
AVCodecContext
*
avctx
;
///< codec context for av_log
DSPContext
dsp
;
///< accelerated DSP functions
uint8_t
frame_data
[
MAX_FRAMESIZE
+
FF_INPUT_BUFFER_PADDING_SIZE
];
///< compressed frame data
PutBitContext
pb
;
///< context for filling the frame_data buffer
FFTContext
mdct_ctx
[
WMALL_BLOCK_SIZES
];
///< MDCT context per block size
DECLARE_ALIGNED
(
16
,
float
,
tmp
)[
WMALL_BLOCK_MAX_SIZE
];
///< IMDCT output buffer
float
*
windows
[
WMALL_BLOCK_SIZES
];
///< windows for the different block sizes
/* frame size dependent frame information (set during initialization) */
uint32_t
decode_flags
;
///< used compression features
uint8_t
len_prefix
;
///< frame is prefixed with its length
uint8_t
dynamic_range_compression
;
///< frame contains DRC data
uint8_t
bits_per_sample
;
///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
uint16_t
samples_per_frame
;
///< number of samples to output
uint16_t
log2_frame_size
;
int8_t
num_channels
;
///< number of channels in the stream (same as AVCodecContext.num_channels)
int8_t
lfe_channel
;
///< lfe channel index
uint8_t
max_num_subframes
;
uint8_t
subframe_len_bits
;
///< number of bits used for the subframe length
uint8_t
max_subframe_len_bit
;
///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
uint16_t
min_samples_per_subframe
;
int8_t
num_sfb
[
WMALL_BLOCK_SIZES
];
///< scale factor bands per block size
int16_t
sfb_offsets
[
WMALL_BLOCK_SIZES
][
MAX_BANDS
];
///< scale factor band offsets (multiples of 4)
int8_t
sf_offsets
[
WMALL_BLOCK_SIZES
][
WMALL_BLOCK_SIZES
][
MAX_BANDS
];
///< scale factor resample matrix
int16_t
subwoofer_cutoffs
[
WMALL_BLOCK_SIZES
];
///< subwoofer cutoff values
/* packet decode state */
GetBitContext
pgb
;
///< bitstream reader context for the packet
int
next_packet_start
;
///< start offset of the next wma packet in the demuxer packet
uint8_t
packet_offset
;
///< frame offset in the packet
uint8_t
packet_sequence_number
;
///< current packet number
int
num_saved_bits
;
///< saved number of bits
int
frame_offset
;
///< frame offset in the bit reservoir
int
subframe_offset
;
///< subframe offset in the bit reservoir
uint8_t
packet_loss
;
///< set in case of bitstream error
uint8_t
packet_done
;
///< set when a packet is fully decoded
/* frame decode state */
uint32_t
frame_num
;
///< current frame number (not used for decoding)
GetBitContext
gb
;
///< bitstream reader context
int
buf_bit_size
;
///< buffer size in bits
float
*
samples
;
///< current samplebuffer pointer
float
*
samples_end
;
///< maximum samplebuffer pointer
uint8_t
drc_gain
;
///< gain for the DRC tool
int8_t
skip_frame
;
///< skip output step
int8_t
parsed_all_subframes
;
///< all subframes decoded?
/* subframe/block decode state */
int16_t
subframe_len
;
///< current subframe length
int8_t
channels_for_cur_subframe
;
///< number of channels that contain the subframe
int8_t
channel_indexes_for_cur_subframe
[
WMALL_MAX_CHANNELS
];
int8_t
num_bands
;
///< number of scale factor bands
int8_t
transmit_num_vec_coeffs
;
///< number of vector coded coefficients is part of the bitstream
int16_t
*
cur_sfb_offsets
;
///< sfb offsets for the current block
uint8_t
table_idx
;
///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
int8_t
esc_len
;
///< length of escaped coefficients
uint8_t
num_chgroups
;
///< number of channel groups
WmallChannelGrp
chgroup
[
WMALL_MAX_CHANNELS
];
///< channel group information
WmallChannelCtx
channel
[
WMALL_MAX_CHANNELS
];
///< per channel data
// WMA lossless
uint8_t
do_arith_coding
;
uint8_t
do_ac_filter
;
uint8_t
do_inter_ch_decorr
;
uint8_t
do_mclms
;
uint8_t
do_lpc
;
int8_t
acfilter_order
;
int8_t
acfilter_scaling
;
int
acfilter_coeffs
[
16
];
int8_t
mclms_order
;
int8_t
mclms_scaling
;
int16_t
mclms_coeffs
[
128
];
int16_t
mclms_coeffs_cur
[
4
];
int
movave_scaling
;
int
quant_stepsize
;
struct
{
int
order
;
int
scaling
;
int
coefsend
;
int
bitsend
;
int16_t
coefs
[
256
];
}
cdlms
[
2
][
9
];
int
cdlms_ttl
[
2
];
int
bV3RTM
;
int
is_channel_coded
[
2
];
int
transient
[
2
];
int
transient_pos
[
2
];
int
seekable_tile
;
int
ave_sum
[
2
];
int
channel_residues
[
2
][
2048
];
int
lpc_coefs
[
2
][
40
];
int
lpc_order
;
int
lpc_scaling
;
int
lpc_intbits
;
int
channel_coeffs
[
2
][
2048
];
}
WmallDecodeCtx
;
#undef dprintf
#define dprintf(pctx, ...) av_log(pctx, AV_LOG_DEBUG, __VA_ARGS__)
/**
*@brief helper function to print the most important members of the context
*@param s context
*/
static
void
av_cold
dump_context
(
WmallDecodeCtx
*
s
)
{
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
PRINT
(
"ed sample bit depth"
,
s
->
bits_per_sample
);
PRINT_HEX
(
"ed decode flags"
,
s
->
decode_flags
);
PRINT
(
"samples per frame"
,
s
->
samples_per_frame
);
PRINT
(
"log2 frame size"
,
s
->
log2_frame_size
);
PRINT
(
"max num subframes"
,
s
->
max_num_subframes
);
PRINT
(
"len prefix"
,
s
->
len_prefix
);
PRINT
(
"num channels"
,
s
->
num_channels
);
}
/**
*@brief Uninitialize the decoder and free all resources.
*@param avctx codec context
*@return 0 on success, < 0 otherwise
*/
static
av_cold
int
decode_end
(
AVCodecContext
*
avctx
)
{
WmallDecodeCtx
*
s
=
avctx
->
priv_data
;
int
i
;
for
(
i
=
0
;
i
<
WMALL_BLOCK_SIZES
;
i
++
)
ff_mdct_end
(
&
s
->
mdct_ctx
[
i
]);
return
0
;
}
/**
*@brief Initialize the decoder.
*@param avctx codec context
*@return 0 on success, -1 otherwise
*/
static
av_cold
int
decode_init
(
AVCodecContext
*
avctx
)
{
WmallDecodeCtx
*
s
=
avctx
->
priv_data
;
uint8_t
*
edata_ptr
=
avctx
->
extradata
;
unsigned
int
channel_mask
;
int
i
;
int
log2_max_num_subframes
;
int
num_possible_block_sizes
;
s
->
avctx
=
avctx
;
dsputil_init
(
&
s
->
dsp
,
avctx
);
init_put_bits
(
&
s
->
pb
,
s
->
frame_data
,
MAX_FRAMESIZE
);
avctx
->
sample_fmt
=
AV_SAMPLE_FMT_FLT
;
if
(
avctx
->
extradata_size
>=
18
)
{
s
->
decode_flags
=
AV_RL16
(
edata_ptr
+
14
);
channel_mask
=
AV_RL32
(
edata_ptr
+
2
);
s
->
bits_per_sample
=
AV_RL16
(
edata_ptr
);
/** dump the extradata */
for
(
i
=
0
;
i
<
avctx
->
extradata_size
;
i
++
)
dprintf
(
avctx
,
"[%x] "
,
avctx
->
extradata
[
i
]);
dprintf
(
avctx
,
"
\n
"
);
}
else
{
av_log_ask_for_sample
(
avctx
,
"Unknown extradata size
\n
"
);
return
AVERROR_INVALIDDATA
;
}
/** generic init */
s
->
log2_frame_size
=
av_log2
(
avctx
->
block_align
)
+
4
;
/** frame info */
s
->
skip_frame
=
1
;
/* skip first frame */
s
->
packet_loss
=
1
;
s
->
len_prefix
=
(
s
->
decode_flags
&
0x40
);
/** get frame len */
s
->
samples_per_frame
=
1
<<
ff_wma_get_frame_len_bits
(
avctx
->
sample_rate
,
3
,
s
->
decode_flags
);
/** init previous block len */
for
(
i
=
0
;
i
<
avctx
->
channels
;
i
++
)
s
->
channel
[
i
].
prev_block_len
=
s
->
samples_per_frame
;
/** subframe info */
log2_max_num_subframes
=
((
s
->
decode_flags
&
0x38
)
>>
3
);
s
->
max_num_subframes
=
1
<<
log2_max_num_subframes
;
s
->
max_subframe_len_bit
=
0
;
s
->
subframe_len_bits
=
av_log2
(
log2_max_num_subframes
)
+
1
;
num_possible_block_sizes
=
log2_max_num_subframes
+
1
;
s
->
min_samples_per_subframe
=
s
->
samples_per_frame
/
s
->
max_num_subframes
;
s
->
dynamic_range_compression
=
(
s
->
decode_flags
&
0x80
);
s
->
bV3RTM
=
s
->
decode_flags
&
0x100
;
if
(
s
->
max_num_subframes
>
MAX_SUBFRAMES
)
{
av_log
(
avctx
,
AV_LOG_ERROR
,
"invalid number of subframes %i
\n
"
,
s
->
max_num_subframes
);
return
AVERROR_INVALIDDATA
;
}
s
->
num_channels
=
avctx
->
channels
;
/** extract lfe channel position */
s
->
lfe_channel
=
-
1
;
if
(
channel_mask
&
8
)
{
unsigned
int
mask
;
for
(
mask
=
1
;
mask
<
16
;
mask
<<=
1
)
{
if
(
channel_mask
&
mask
)
++
s
->
lfe_channel
;
}
}
if
(
s
->
num_channels
<
0
)
{
av_log
(
avctx
,
AV_LOG_ERROR
,
"invalid number of channels %d
\n
"
,
s
->
num_channels
);
return
AVERROR_INVALIDDATA
;
}
else
if
(
s
->
num_channels
>
WMALL_MAX_CHANNELS
)
{
av_log_ask_for_sample
(
avctx
,
"unsupported number of channels
\n
"
);
return
AVERROR_PATCHWELCOME
;
}
avctx
->
channel_layout
=
channel_mask
;
return
0
;
}
/**
*@brief Decode the subframe length.
*@param s context
*@param offset sample offset in the frame
*@return decoded subframe length on success, < 0 in case of an error
*/
static
int
decode_subframe_length
(
WmallDecodeCtx
*
s
,
int
offset
)
{
int
frame_len_ratio
;
int
subframe_len
,
len
;
/** no need to read from the bitstream when only one length is possible */
if
(
offset
==
s
->
samples_per_frame
-
s
->
min_samples_per_subframe
)
return
s
->
min_samples_per_subframe
;
len
=
av_log2
(
s
->
max_num_subframes
-
1
)
+
1
;
frame_len_ratio
=
get_bits
(
&
s
->
gb
,
len
);
subframe_len
=
s
->
min_samples_per_subframe
*
(
frame_len_ratio
+
1
);
/** sanity check the length */
if
(
subframe_len
<
s
->
min_samples_per_subframe
||
subframe_len
>
s
->
samples_per_frame
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: subframe_len %i
\n
"
,
subframe_len
);
return
AVERROR_INVALIDDATA
;
}
return
subframe_len
;
}
/**
*@brief Decode how the data in the frame is split into subframes.
* Every WMA frame contains the encoded data for a fixed number of
* samples per channel. The data for every channel might be split
* into several subframes. This function will reconstruct the list of
* subframes for every channel.
*
* If the subframes are not evenly split, the algorithm estimates the
* channels with the lowest number of total samples.
* Afterwards, for each of these channels a bit is read from the
* bitstream that indicates if the channel contains a subframe with the
* next subframe size that is going to be read from the bitstream or not.
* If a channel contains such a subframe, the subframe size gets added to
* the channel's subframe list.
* The algorithm repeats these steps until the frame is properly divided
* between the individual channels.
*
*@param s context
*@return 0 on success, < 0 in case of an error
*/
static
int
decode_tilehdr
(
WmallDecodeCtx
*
s
)
{
uint16_t
num_samples
[
WMALL_MAX_CHANNELS
];
/**< sum of samples for all currently known subframes of a channel */
uint8_t
contains_subframe
[
WMALL_MAX_CHANNELS
];
/**< flag indicating if a channel contains the current subframe */
int
channels_for_cur_subframe
=
s
->
num_channels
;
/**< number of channels that contain the current subframe */
int
fixed_channel_layout
=
0
;
/**< flag indicating that all channels use the same subfra2me offsets and sizes */
int
min_channel_len
=
0
;
/**< smallest sum of samples (channels with this length will be processed first) */
int
c
;
/* Should never consume more than 3073 bits (256 iterations for the
* while loop when always the minimum amount of 128 samples is substracted
* from missing samples in the 8 channel case).
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
*/
/** reset tiling information */
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
s
->
channel
[
c
].
num_subframes
=
0
;
memset
(
num_samples
,
0
,
sizeof
(
num_samples
));
if
(
s
->
max_num_subframes
==
1
||
get_bits1
(
&
s
->
gb
))
fixed_channel_layout
=
1
;
/** loop until the frame data is split between the subframes */
do
{
int
subframe_len
;
/** check which channels contain the subframe */
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
if
(
num_samples
[
c
]
==
min_channel_len
)
{
if
(
fixed_channel_layout
||
channels_for_cur_subframe
==
1
||
(
min_channel_len
==
s
->
samples_per_frame
-
s
->
min_samples_per_subframe
))
{
contains_subframe
[
c
]
=
1
;
}
else
{
contains_subframe
[
c
]
=
get_bits1
(
&
s
->
gb
);
}
}
else
contains_subframe
[
c
]
=
0
;
}
/** get subframe length, subframe_len == 0 is not allowed */
if
((
subframe_len
=
decode_subframe_length
(
s
,
min_channel_len
))
<=
0
)
return
AVERROR_INVALIDDATA
;
/** add subframes to the individual channels and find new min_channel_len */
min_channel_len
+=
subframe_len
;
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
WmallChannelCtx
*
chan
=
&
s
->
channel
[
c
];
if
(
contains_subframe
[
c
])
{
if
(
chan
->
num_subframes
>=
MAX_SUBFRAMES
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: num subframes > 31
\n
"
);
return
AVERROR_INVALIDDATA
;
}
chan
->
subframe_len
[
chan
->
num_subframes
]
=
subframe_len
;
num_samples
[
c
]
+=
subframe_len
;
++
chan
->
num_subframes
;
if
(
num_samples
[
c
]
>
s
->
samples_per_frame
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken frame: "
"channel len(%d) > samples_per_frame(%d)
\n
"
,
num_samples
[
c
],
s
->
samples_per_frame
);
return
AVERROR_INVALIDDATA
;
}
}
else
if
(
num_samples
[
c
]
<=
min_channel_len
)
{
if
(
num_samples
[
c
]
<
min_channel_len
)
{
channels_for_cur_subframe
=
0
;
min_channel_len
=
num_samples
[
c
];
}
++
channels_for_cur_subframe
;
}
}
}
while
(
min_channel_len
<
s
->
samples_per_frame
);
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
int
i
;
int
offset
=
0
;
for
(
i
=
0
;
i
<
s
->
channel
[
c
].
num_subframes
;
i
++
)
{
s
->
channel
[
c
].
subframe_offset
[
i
]
=
offset
;
offset
+=
s
->
channel
[
c
].
subframe_len
[
i
];
}
}
return
0
;
}
static
int
my_log2
(
unsigned
int
i
)
{
unsigned
int
iLog2
=
0
;
while
((
i
>>
iLog2
)
>
1
)
iLog2
++
;
return
iLog2
;
}
/**
*
*/
static
void
decode_ac_filter
(
WmallDecodeCtx
*
s
)
{
int
i
;
s
->
acfilter_order
=
get_bits
(
&
s
->
gb
,
4
)
+
1
;
s
->
acfilter_scaling
=
get_bits
(
&
s
->
gb
,
4
);
for
(
i
=
0
;
i
<
s
->
acfilter_order
;
i
++
)
{
s
->
acfilter_coeffs
[
i
]
=
get_bits
(
&
s
->
gb
,
s
->
acfilter_scaling
)
+
1
;
}
}
/**
*
*/
static
void
decode_mclms
(
WmallDecodeCtx
*
s
)
{
s
->
mclms_order
=
(
get_bits
(
&
s
->
gb
,
4
)
+
1
)
*
2
;
s
->
mclms_scaling
=
get_bits
(
&
s
->
gb
,
4
);
if
(
get_bits1
(
&
s
->
gb
))
{
// mclms_send_coef
int
i
;
int
send_coef_bits
;
int
cbits
=
av_log2
(
s
->
mclms_scaling
+
1
);
assert
(
cbits
==
my_log2
(
s
->
mclms_scaling
+
1
));
if
(
1
<<
cbits
<
s
->
mclms_scaling
+
1
)
cbits
++
;
send_coef_bits
=
(
cbits
?
get_bits
(
&
s
->
gb
,
cbits
)
:
0
)
+
2
;
for
(
i
=
0
;
i
<
s
->
mclms_order
*
s
->
num_channels
*
s
->
num_channels
;
i
++
)
{
s
->
mclms_coeffs
[
i
]
=
get_bits
(
&
s
->
gb
,
send_coef_bits
);
}
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
int
c
;
for
(
c
=
0
;
c
<
i
;
c
++
)
{
s
->
mclms_coeffs_cur
[
i
*
s
->
num_channels
+
c
]
=
get_bits
(
&
s
->
gb
,
send_coef_bits
);
}
}
}
}
/**
*
*/
static
void
decode_cdlms
(
WmallDecodeCtx
*
s
)
{
int
c
,
i
;
int
cdlms_send_coef
=
get_bits1
(
&
s
->
gb
);
for
(
c
=
0
;
c
<
s
->
num_channels
;
c
++
)
{
s
->
cdlms_ttl
[
c
]
=
get_bits
(
&
s
->
gb
,
3
)
+
1
;
for
(
i
=
0
;
i
<
s
->
cdlms_ttl
[
c
];
i
++
)
{
s
->
cdlms
[
c
][
i
].
order
=
(
get_bits
(
&
s
->
gb
,
7
)
+
1
)
*
8
;
}
for
(
i
=
0
;
i
<
s
->
cdlms_ttl
[
c
];
i
++
)
{
s
->
cdlms
[
c
][
i
].
scaling
=
get_bits
(
&
s
->
gb
,
4
);
}
if
(
cdlms_send_coef
)
{
for
(
i
=
0
;
i
<
s
->
cdlms_ttl
[
c
];
i
++
)
{
int
cbits
,
shift_l
,
shift_r
,
j
;
cbits
=
av_log2
(
s
->
cdlms
[
c
][
i
].
order
);
if
(
1
<<
cbits
<
s
->
cdlms
[
c
][
i
].
order
)
cbits
++
;
s
->
cdlms
[
c
][
i
].
coefsend
=
get_bits
(
&
s
->
gb
,
cbits
)
+
1
;
cbits
=
av_log2
(
s
->
cdlms
[
c
][
i
].
scaling
+
1
);
if
(
1
<<
cbits
<
s
->
cdlms
[
c
][
i
].
scaling
+
1
)
cbits
++
;
s
->
cdlms
[
c
][
i
].
bitsend
=
get_bits
(
&
s
->
gb
,
cbits
)
+
2
;
shift_l
=
32
-
s
->
cdlms
[
c
][
i
].
bitsend
;
shift_r
=
32
-
2
-
s
->
cdlms
[
c
][
i
].
scaling
;
for
(
j
=
0
;
j
<
s
->
cdlms
[
c
][
i
].
coefsend
;
j
++
)
{
s
->
cdlms
[
c
][
i
].
coefs
[
j
]
=
(
get_bits
(
&
s
->
gb
,
s
->
cdlms
[
c
][
i
].
bitsend
)
<<
shift_l
)
>>
shift_r
;
}
}
}
}
}
/**
*
*/
static
int
decode_channel_residues
(
WmallDecodeCtx
*
s
,
int
ch
,
int
tile_size
)
{
int
i
=
0
;
unsigned
int
ave_mean
;
s
->
transient
[
ch
]
=
get_bits1
(
&
s
->
gb
);
if
(
s
->
transient
[
ch
])
s
->
transient_pos
[
ch
]
=
get_bits
(
&
s
->
gb
,
av_log2
(
tile_size
));
if
(
s
->
seekable_tile
)
{
ave_mean
=
get_bits
(
&
s
->
gb
,
s
->
bits_per_sample
);
s
->
ave_sum
[
ch
]
=
ave_mean
<<
(
s
->
movave_scaling
+
1
);
// s->ave_sum[ch] *= 2;
}
if
(
s
->
seekable_tile
)
{
if
(
s
->
do_inter_ch_decorr
)
s
->
channel_residues
[
ch
][
0
]
=
get_sbits
(
&
s
->
gb
,
s
->
bits_per_sample
+
1
);
else
s
->
channel_residues
[
ch
][
0
]
=
get_sbits
(
&
s
->
gb
,
s
->
bits_per_sample
);
i
++
;
}
for
(;
i
<
tile_size
;
i
++
)
{
int
quo
=
0
,
rem
,
rem_bits
,
residue
;
while
(
get_bits1
(
&
s
->
gb
))
quo
++
;
if
(
quo
>=
32
)
quo
+=
get_bits_long
(
&
s
->
gb
,
get_bits
(
&
s
->
gb
,
5
)
+
1
);
ave_mean
=
(
s
->
ave_sum
[
ch
]
+
(
1
<<
s
->
movave_scaling
))
>>
(
s
->
movave_scaling
+
1
);
rem_bits
=
av_ceil_log2
(
ave_mean
);
rem
=
rem_bits
?
get_bits
(
&
s
->
gb
,
rem_bits
)
:
0
;
residue
=
(
quo
<<
rem_bits
)
+
rem
;
s
->
ave_sum
[
ch
]
=
residue
+
s
->
ave_sum
[
ch
]
-
(
s
->
ave_sum
[
ch
]
>>
s
->
movave_scaling
);
if
(
residue
&
1
)
residue
=
-
(
residue
>>
1
)
-
1
;
else
residue
=
residue
>>
1
;
s
->
channel_residues
[
ch
][
i
]
=
residue
;
// dprintf(s->avctx, "%5d: %5d %10d %12d %12d %5d %-16d %04x\n",i, quo, ave_mean, s->ave_sum[ch], rem, rem_bits, s->channel_residues[ch][i], show_bits(&s->gb, 16));
}
return
0
;
}
/**
*
*/
static
void
decode_lpc
(
WmallDecodeCtx
*
s
)
{
int
ch
,
i
,
cbits
;
s
->
lpc_order
=
get_bits
(
&
s
->
gb
,
5
)
+
1
;
s
->
lpc_scaling
=
get_bits
(
&
s
->
gb
,
4
);
s
->
lpc_intbits
=
get_bits
(
&
s
->
gb
,
3
)
+
1
;
cbits
=
s
->
lpc_scaling
+
s
->
lpc_intbits
;
for
(
ch
=
0
;
ch
<
s
->
num_channels
;
ch
++
)
{
for
(
i
=
0
;
i
<
s
->
lpc_order
;
i
++
)
{
s
->
lpc_coefs
[
ch
][
i
]
=
get_sbits
(
&
s
->
gb
,
cbits
);
}
}
}
/**
*@brief Decode a single subframe (block).
*@param s codec context
*@return 0 on success, < 0 when decoding failed
*/
static
int
decode_subframe
(
WmallDecodeCtx
*
s
)
{
int
offset
=
s
->
samples_per_frame
;
int
subframe_len
=
s
->
samples_per_frame
;
int
i
;
int
total_samples
=
s
->
samples_per_frame
*
s
->
num_channels
;
int
rawpcm_tile
;
int
padding_zeroes
;
s
->
subframe_offset
=
get_bits_count
(
&
s
->
gb
);
/** reset channel context and find the next block offset and size
== the next block of the channel with the smallest number of
decoded samples
*/
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
channel
[
i
].
grouped
=
0
;
if
(
offset
>
s
->
channel
[
i
].
decoded_samples
)
{
offset
=
s
->
channel
[
i
].
decoded_samples
;
subframe_len
=
s
->
channel
[
i
].
subframe_len
[
s
->
channel
[
i
].
cur_subframe
];
}
}
/** get a list of all channels that contain the estimated block */
s
->
channels_for_cur_subframe
=
0
;
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
const
int
cur_subframe
=
s
->
channel
[
i
].
cur_subframe
;
/** substract already processed samples */
total_samples
-=
s
->
channel
[
i
].
decoded_samples
;
/** and count if there are multiple subframes that match our profile */
if
(
offset
==
s
->
channel
[
i
].
decoded_samples
&&
subframe_len
==
s
->
channel
[
i
].
subframe_len
[
cur_subframe
])
{
total_samples
-=
s
->
channel
[
i
].
subframe_len
[
cur_subframe
];
s
->
channel
[
i
].
decoded_samples
+=
s
->
channel
[
i
].
subframe_len
[
cur_subframe
];
s
->
channel_indexes_for_cur_subframe
[
s
->
channels_for_cur_subframe
]
=
i
;
++
s
->
channels_for_cur_subframe
;
}
}
/** check if the frame will be complete after processing the
estimated block */
if
(
!
total_samples
)
s
->
parsed_all_subframes
=
1
;
s
->
seekable_tile
=
get_bits1
(
&
s
->
gb
);
if
(
s
->
seekable_tile
)
{
s
->
do_arith_coding
=
get_bits1
(
&
s
->
gb
);
if
(
s
->
do_arith_coding
)
{
dprintf
(
s
->
avctx
,
"do_arith_coding == 1"
);
abort
();
}
s
->
do_ac_filter
=
get_bits1
(
&
s
->
gb
);
s
->
do_inter_ch_decorr
=
get_bits1
(
&
s
->
gb
);
s
->
do_mclms
=
get_bits1
(
&
s
->
gb
);
if
(
s
->
do_ac_filter
)
decode_ac_filter
(
s
);
if
(
s
->
do_mclms
)
decode_mclms
(
s
);
decode_cdlms
(
s
);
s
->
movave_scaling
=
get_bits
(
&
s
->
gb
,
3
);
s
->
quant_stepsize
=
get_bits
(
&
s
->
gb
,
8
)
+
1
;
}
rawpcm_tile
=
get_bits1
(
&
s
->
gb
);
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
is_channel_coded
[
i
]
=
1
;
}
if
(
!
rawpcm_tile
)
{
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
is_channel_coded
[
i
]
=
get_bits1
(
&
s
->
gb
);
}
if
(
s
->
bV3RTM
)
{
// LPC
s
->
do_lpc
=
get_bits1
(
&
s
->
gb
);
if
(
s
->
do_lpc
)
{
decode_lpc
(
s
);
}
}
else
{
s
->
do_lpc
=
0
;
}
}
if
(
get_bits1
(
&
s
->
gb
))
{
padding_zeroes
=
get_bits
(
&
s
->
gb
,
5
);
}
else
{
padding_zeroes
=
0
;
}
if
(
rawpcm_tile
)
{
int
bits
=
s
->
bits_per_sample
-
padding_zeroes
;
int
j
;
dprintf
(
s
->
avctx
,
"RAWPCM %d bits per sample. total %d bits, remain=%d
\n
"
,
bits
,
bits
*
s
->
num_channels
*
subframe_len
,
get_bits_count
(
&
s
->
gb
));
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
for
(
j
=
0
;
j
<
subframe_len
;
j
++
)
{
s
->
channel_coeffs
[
i
][
j
]
=
get_sbits
(
&
s
->
gb
,
bits
);
// dprintf(s->avctx, "PCM[%d][%d] = 0x%04x\n", i, j, s->channel_coeffs[i][j]);
}
}
}
else
{
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
if
(
s
->
is_channel_coded
[
i
])
decode_channel_residues
(
s
,
i
,
subframe_len
);
}
/** handled one subframe */
for
(
i
=
0
;
i
<
s
->
channels_for_cur_subframe
;
i
++
)
{
int
c
=
s
->
channel_indexes_for_cur_subframe
[
i
];
if
(
s
->
channel
[
c
].
cur_subframe
>=
s
->
channel
[
c
].
num_subframes
)
{
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"broken subframe
\n
"
);
return
AVERROR_INVALIDDATA
;
}
++
s
->
channel
[
c
].
cur_subframe
;
}
return
0
;
}
/**
*@brief Decode one WMA frame.
*@param s codec context
*@return 0 if the trailer bit indicates that this is the last frame,
* 1 if there are additional frames
*/
static
int
decode_frame
(
WmallDecodeCtx
*
s
)
{
GetBitContext
*
gb
=
&
s
->
gb
;
int
more_frames
=
0
;
int
len
=
0
;
int
i
;
/** check for potential output buffer overflow */
if
(
s
->
num_channels
*
s
->
samples_per_frame
>
s
->
samples_end
-
s
->
samples
)
{
/** return an error if no frame could be decoded at all */
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"not enough space for the output samples
\n
"
);
s
->
packet_loss
=
1
;
return
0
;
}
/** get frame length */
if
(
s
->
len_prefix
)
len
=
get_bits
(
gb
,
s
->
log2_frame_size
);
/** decode tile information */
if
(
decode_tilehdr
(
s
))
{
s
->
packet_loss
=
1
;
return
0
;
}
/** read drc info */
if
(
s
->
dynamic_range_compression
)
{
s
->
drc_gain
=
get_bits
(
gb
,
8
);
}
/** no idea what these are for, might be the number of samples
that need to be skipped at the beginning or end of a stream */
if
(
get_bits1
(
gb
))
{
int
skip
;
/** usually true for the first frame */
if
(
get_bits1
(
gb
))
{
skip
=
get_bits
(
gb
,
av_log2
(
s
->
samples_per_frame
*
2
));
dprintf
(
s
->
avctx
,
"start skip: %i
\n
"
,
skip
);
}
/** sometimes true for the last frame */
if
(
get_bits1
(
gb
))
{
skip
=
get_bits
(
gb
,
av_log2
(
s
->
samples_per_frame
*
2
));
dprintf
(
s
->
avctx
,
"end skip: %i
\n
"
,
skip
);
}
}
/** reset subframe states */
s
->
parsed_all_subframes
=
0
;
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
{
s
->
channel
[
i
].
decoded_samples
=
0
;
s
->
channel
[
i
].
cur_subframe
=
0
;
s
->
channel
[
i
].
reuse_sf
=
0
;
}
/** decode all subframes */
while
(
!
s
->
parsed_all_subframes
)
{
if
(
decode_subframe
(
s
)
<
0
)
{
s
->
packet_loss
=
1
;
return
0
;
}
}
dprintf
(
s
->
avctx
,
"Frame done
\n
"
);
if
(
s
->
skip_frame
)
{
s
->
skip_frame
=
0
;
}
else
s
->
samples
+=
s
->
num_channels
*
s
->
samples_per_frame
;
if
(
s
->
len_prefix
)
{
if
(
len
!=
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
+
2
)
{
/** FIXME: not sure if this is always an error */
av_log
(
s
->
avctx
,
AV_LOG_ERROR
,
"frame[%i] would have to skip %i bits
\n
"
,
s
->
frame_num
,
len
-
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
-
1
);
s
->
packet_loss
=
1
;
return
0
;
}
/** skip the rest of the frame data */
skip_bits_long
(
gb
,
len
-
(
get_bits_count
(
gb
)
-
s
->
frame_offset
)
-
1
);
}
else
{
/*
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
dprintf(s->avctx, "skip1\n");
}
*/
}
/** decode trailer bit */
more_frames
=
get_bits1
(
gb
);
++
s
->
frame_num
;
return
more_frames
;
}
/**
*@brief Calculate remaining input buffer length.
*@param s codec context
*@param gb bitstream reader context
*@return remaining size in bits
*/
static
int
remaining_bits
(
WmallDecodeCtx
*
s
,
GetBitContext
*
gb
)
{
return
s
->
buf_bit_size
-
get_bits_count
(
gb
);
}
/**
*@brief Fill the bit reservoir with a (partial) frame.
*@param s codec context
*@param gb bitstream reader context
*@param len length of the partial frame
*@param append decides wether to reset the buffer or not
*/
static
void
save_bits
(
WmallDecodeCtx
*
s
,
GetBitContext
*
gb
,
int
len
,
int
append
)
{
int
buflen
;
/** when the frame data does not need to be concatenated, the input buffer
is resetted and additional bits from the previous frame are copyed
and skipped later so that a fast byte copy is possible */
if
(
!
append
)
{
s
->
frame_offset
=
get_bits_count
(
gb
)
&
7
;
s
->
num_saved_bits
=
s
->
frame_offset
;
init_put_bits
(
&
s
->
pb
,
s
->
frame_data
,
MAX_FRAMESIZE
);
}
buflen
=
(
s
->
num_saved_bits
+
len
+
8
)
>>
3
;
if
(
len
<=
0
||
buflen
>
MAX_FRAMESIZE
)
{
av_log_ask_for_sample
(
s
->
avctx
,
"input buffer too small
\n
"
);
s
->
packet_loss
=
1
;
return
;
}
s
->
num_saved_bits
+=
len
;
if
(
!
append
)
{
ff_copy_bits
(
&
s
->
pb
,
gb
->
buffer
+
(
get_bits_count
(
gb
)
>>
3
),
s
->
num_saved_bits
);
}
else
{
int
align
=
8
-
(
get_bits_count
(
gb
)
&
7
);
align
=
FFMIN
(
align
,
len
);
put_bits
(
&
s
->
pb
,
align
,
get_bits
(
gb
,
align
));
len
-=
align
;
ff_copy_bits
(
&
s
->
pb
,
gb
->
buffer
+
(
get_bits_count
(
gb
)
>>
3
),
len
);
}
skip_bits_long
(
gb
,
len
);
{
PutBitContext
tmp
=
s
->
pb
;
flush_put_bits
(
&
tmp
);
}
init_get_bits
(
&
s
->
gb
,
s
->
frame_data
,
s
->
num_saved_bits
);
skip_bits
(
&
s
->
gb
,
s
->
frame_offset
);
}
/**
*@brief Decode a single WMA packet.
*@param avctx codec context
*@param data the output buffer
*@param data_size number of bytes that were written to the output buffer
*@param avpkt input packet
*@return number of bytes that were read from the input buffer
*/
static
int
decode_packet
(
AVCodecContext
*
avctx
,
void
*
data
,
int
*
data_size
,
AVPacket
*
avpkt
)
{
WmallDecodeCtx
*
s
=
avctx
->
priv_data
;
GetBitContext
*
gb
=
&
s
->
pgb
;
const
uint8_t
*
buf
=
avpkt
->
data
;
int
buf_size
=
avpkt
->
size
;
int
num_bits_prev_frame
;
int
packet_sequence_number
;
s
->
samples
=
data
;
s
->
samples_end
=
(
float
*
)((
int8_t
*
)
data
+
*
data_size
);
*
data_size
=
0
;
if
(
s
->
packet_done
||
s
->
packet_loss
)
{
s
->
packet_done
=
0
;
/** sanity check for the buffer length */
if
(
buf_size
<
avctx
->
block_align
)
return
0
;
s
->
next_packet_start
=
buf_size
-
avctx
->
block_align
;
buf_size
=
avctx
->
block_align
;
s
->
buf_bit_size
=
buf_size
<<
3
;
/** parse packet header */
init_get_bits
(
gb
,
buf
,
s
->
buf_bit_size
);
packet_sequence_number
=
get_bits
(
gb
,
4
);
int
seekable_frame_in_packet
=
get_bits1
(
gb
);
int
spliced_packet
=
get_bits1
(
gb
);
/** get number of bits that need to be added to the previous frame */
num_bits_prev_frame
=
get_bits
(
gb
,
s
->
log2_frame_size
);
/** check for packet loss */
if
(
!
s
->
packet_loss
&&
((
s
->
packet_sequence_number
+
1
)
&
0xF
)
!=
packet_sequence_number
)
{
s
->
packet_loss
=
1
;
av_log
(
avctx
,
AV_LOG_ERROR
,
"Packet loss detected! seq %x vs %x
\n
"
,
s
->
packet_sequence_number
,
packet_sequence_number
);
}
s
->
packet_sequence_number
=
packet_sequence_number
;
if
(
num_bits_prev_frame
>
0
)
{
int
remaining_packet_bits
=
s
->
buf_bit_size
-
get_bits_count
(
gb
);
if
(
num_bits_prev_frame
>=
remaining_packet_bits
)
{
num_bits_prev_frame
=
remaining_packet_bits
;
s
->
packet_done
=
1
;
}
/** append the previous frame data to the remaining data from the
previous packet to create a full frame */
save_bits
(
s
,
gb
,
num_bits_prev_frame
,
1
);
/** decode the cross packet frame if it is valid */
if
(
!
s
->
packet_loss
)
decode_frame
(
s
);
}
else
if
(
s
->
num_saved_bits
-
s
->
frame_offset
)
{
dprintf
(
avctx
,
"ignoring %x previously saved bits
\n
"
,
s
->
num_saved_bits
-
s
->
frame_offset
);
}
if
(
s
->
packet_loss
)
{
/** reset number of saved bits so that the decoder
does not start to decode incomplete frames in the
s->len_prefix == 0 case */
s
->
num_saved_bits
=
0
;
s
->
packet_loss
=
0
;
}
}
else
{
int
frame_size
;
s
->
buf_bit_size
=
(
avpkt
->
size
-
s
->
next_packet_start
)
<<
3
;
init_get_bits
(
gb
,
avpkt
->
data
,
s
->
buf_bit_size
);
skip_bits
(
gb
,
s
->
packet_offset
);
if
(
s
->
len_prefix
&&
remaining_bits
(
s
,
gb
)
>
s
->
log2_frame_size
&&
(
frame_size
=
show_bits
(
gb
,
s
->
log2_frame_size
))
&&
frame_size
<=
remaining_bits
(
s
,
gb
))
{
save_bits
(
s
,
gb
,
frame_size
,
0
);
s
->
packet_done
=
!
decode_frame
(
s
);
}
else
if
(
!
s
->
len_prefix
&&
s
->
num_saved_bits
>
get_bits_count
(
&
s
->
gb
))
{
/** when the frames do not have a length prefix, we don't know
the compressed length of the individual frames
however, we know what part of a new packet belongs to the
previous frame
therefore we save the incoming packet first, then we append
the "previous frame" data from the next packet so that
we get a buffer that only contains full frames */
s
->
packet_done
=
!
decode_frame
(
s
);
}
else
{
s
->
packet_done
=
1
;
}
}
if
(
s
->
packet_done
&&
!
s
->
packet_loss
&&
remaining_bits
(
s
,
gb
)
>
0
)
{
/** save the rest of the data so that it can be decoded
with the next packet */
save_bits
(
s
,
gb
,
remaining_bits
(
s
,
gb
),
0
);
}
*
data_size
=
0
;
// (int8_t *)s->samples - (int8_t *)data;
s
->
packet_offset
=
get_bits_count
(
gb
)
&
7
;
return
(
s
->
packet_loss
)
?
AVERROR_INVALIDDATA
:
get_bits_count
(
gb
)
>>
3
;
}
/**
*@brief Clear decoder buffers (for seeking).
*@param avctx codec context
*/
static
void
flush
(
AVCodecContext
*
avctx
)
{
WmallDecodeCtx
*
s
=
avctx
->
priv_data
;
int
i
;
/** reset output buffer as a part of it is used during the windowing of a
new frame */
for
(
i
=
0
;
i
<
s
->
num_channels
;
i
++
)
memset
(
s
->
channel
[
i
].
out
,
0
,
s
->
samples_per_frame
*
sizeof
(
*
s
->
channel
[
i
].
out
));
s
->
packet_loss
=
1
;
}
/**
*@brief wmall decoder
*/
AVCodec
wmalossless_decoder
=
{
"wmalossless"
,
AVMEDIA_TYPE_AUDIO
,
CODEC_ID_WMALOSSLESS
,
sizeof
(
WmallDecodeCtx
),
decode_init
,
NULL
,
decode_end
,
decode_packet
,
.
capabilities
=
CODEC_CAP_SUBFRAMES
,
.
flush
=
flush
,
.
long_name
=
NULL_IF_CONFIG_SMALL
(
"Windows Media Audio 9 Lossless"
),
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment