vf_dnn_processing: add support for more formats gray8 and grayf32
The following is a python script to halve the value of the gray image. It demos how to setup and execute dnn model with python+tensorflow. It also generates .pb file which will be used by ffmpeg. import tensorflow as tf import numpy as np from skimage import color from skimage import io in_img = io.imread('input.jpg') in_img = color.rgb2gray(in_img) io.imsave('ori_gray.jpg', np.squeeze(in_img)) in_data = np.expand_dims(in_img, axis=0) in_data = np.expand_dims(in_data, axis=3) filter_data = np.array([0.5]).reshape(1,1,1,1).astype(np.float32) filter = tf.Variable(filter_data) x = tf.placeholder(tf.float32, shape=[1, None, None, 1], name='dnn_in') y = tf.nn.conv2d(x, filter, strides=[1, 1, 1, 1], padding='VALID', name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'halve_gray_float.pb', as_text=False) print("halve_gray_float.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate halve_gray_float.model\n") output = sess.run(y, feed_dict={x: in_data}) output = output * 255.0 output = output.astype(np.uint8) io.imsave("out.jpg", np.squeeze(output)) To do the same thing with ffmpeg: - generate halve_gray_float.pb with the above script - generate halve_gray_float.model with tools/python/convert.py - try with following commands ./ffmpeg -i input.jpg -vf format=grayf32,dnn_processing=model=halve_gray_float.model:input=dnn_in:output=dnn_out:dnn_backend=native out.native.png ./ffmpeg -i input.jpg -vf format=grayf32,dnn_processing=model=halve_gray_float.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow out.tf.png Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
Showing
Please
register
or
sign in
to comment