Commit 28dfa1e3 authored by Paul B Mahol's avatar Paul B Mahol

avfilter/vf_v360: rewrite storing of remap positions and interpolations

In preparation of SIMD assembly.
parent 3424600e
......@@ -117,7 +117,8 @@ typedef struct V360Context {
int inplanewidth[4], inplaneheight[4];
int nb_planes;
void *remap[4];
uint16_t *u[4], *v[4];
float *ker[4];
int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} V360Context;
......@@ -249,11 +250,6 @@ static int query_formats(AVFilterContext *ctx)
return ff_set_common_formats(ctx, fmts_list);
}
typedef struct XYRemap1 {
uint16_t u;
uint16_t v;
} XYRemap1;
/**
* Generate no-interpolation remapping function with a given pixel depth.
*
......@@ -275,7 +271,6 @@ static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr,
const int out_linesize = out->linesize[plane] / div; \
const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
const XYRemap1 *remap = s->remap[plane]; \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
\
......@@ -283,12 +278,11 @@ static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr,
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (y = slice_start; y < slice_end; y++) { \
const uint16_t *u = s->u[plane] + y * width; \
const uint16_t *v = s->v[plane] + y * width; \
uint##bits##_t *d = dst + y * out_linesize; \
for (x = 0; x < width; x++) { \
const XYRemap1 *r = &remap[y * width + x]; \
\
*d++ = src[r->v * in_linesize + r->u]; \
} \
for (x = 0; x < width; x++) \
*d++ = src[v[x] * in_linesize + u[x]]; \
} \
} \
\
......@@ -298,27 +292,21 @@ static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr,
DEFINE_REMAP1( 8, 1)
DEFINE_REMAP1(16, 2)
typedef struct XYRemap2 {
uint16_t u[2][2];
uint16_t v[2][2];
float ker[2][2];
} XYRemap2;
typedef struct XYRemap4 {
typedef struct XYRemap {
uint16_t u[4][4];
uint16_t v[4][4];
float ker[4][4];
} XYRemap4;
} XYRemap;
/**
* Generate remapping function with a given window size and pixel depth.
*
* @param window_size size of interpolation window
* @param ws size of interpolation window
* @param bits number of bits per pixel
* @param div number of bytes per pixel
*/
#define DEFINE_REMAP(window_size, bits, div) \
static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
#define DEFINE_REMAP(ws, bits, div) \
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = (ThreadData*)arg; \
const V360Context *s = ctx->priv; \
......@@ -332,7 +320,6 @@ static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx, void *ar
const int out_linesize = out->linesize[plane] / div; \
const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
const XYRemap##window_size *remap = s->remap[plane]; \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
\
......@@ -341,13 +328,18 @@ static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx, void *ar
\
for (y = slice_start; y < slice_end; y++) { \
uint##bits##_t *d = dst + y * out_linesize; \
const uint16_t *u = s->u[plane] + y * width * ws * ws; \
const uint16_t *v = s->v[plane] + y * width * ws * ws; \
const float *ker = s->ker[plane] + y * width * ws * ws; \
for (x = 0; x < width; x++) { \
const XYRemap##window_size *r = &remap[y * width + x]; \
const uint16_t *uu = u + x * ws * ws; \
const uint16_t *vv = v + x * ws * ws; \
const float *kker = ker + x * ws * ws; \
float tmp = 0.f; \
\
for (i = 0; i < window_size; i++) { \
for (j = 0; j < window_size; j++) { \
tmp += r->ker[i][j] * src[r->v[i][j] * in_linesize + r->u[i][j]]; \
for (i = 0; i < ws; i++) { \
for (j = 0; j < ws; j++) { \
tmp += kker[i * ws + j] * src[vv[i * ws + j] * in_linesize + uu[i * ws + j]]; \
} \
} \
\
......@@ -369,18 +361,19 @@ DEFINE_REMAP(4, 16, 2)
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void nearest_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
static void nearest_kernel(float du, float dv, const XYRemap *r_tmp,
uint16_t *u, uint16_t *v, float *ker)
{
XYRemap1 *r = (XYRemap1*)r_void + shift;
const int i = roundf(dv) + 1;
const int j = roundf(du) + 1;
r->u = r_tmp->u[i][j];
r->v = r_tmp->v[i][j];
u[0] = r_tmp->u[i][j];
v[0] = r_tmp->v[i][j];
}
/**
......@@ -388,26 +381,27 @@ static void nearest_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp,
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bilinear_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
static void bilinear_kernel(float du, float dv, const XYRemap *r_tmp,
uint16_t *u, uint16_t *v, float *ker)
{
XYRemap2 *r = (XYRemap2*)r_void + shift;
int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
r->u[i][j] = r_tmp->u[i + 1][j + 1];
r->v[i][j] = r_tmp->v[i + 1][j + 1];
u[i * 2 + j] = r_tmp->u[i + 1][j + 1];
v[i * 2 + j] = r_tmp->v[i + 1][j + 1];
}
}
r->ker[0][0] = (1.f - du) * (1.f - dv);
r->ker[0][1] = du * (1.f - dv);
r->ker[1][0] = (1.f - du) * dv;
r->ker[1][1] = du * dv;
ker[0] = (1.f - du) * (1.f - dv);
ker[1] = du * (1.f - dv);
ker[2] = (1.f - du) * dv;
ker[3] = du * dv;
}
/**
......@@ -432,13 +426,14 @@ static inline void calculate_bicubic_coeffs(float t, float *coeffs)
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bicubic_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
static void bicubic_kernel(float du, float dv, const XYRemap *r_tmp,
uint16_t *u, uint16_t *v, float *ker)
{
XYRemap4 *r = (XYRemap4*)r_void + shift;
int i, j;
float du_coeffs[4];
float dv_coeffs[4];
......@@ -448,9 +443,9 @@ static void bicubic_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp,
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
r->u[i][j] = r_tmp->u[i][j];
r->v[i][j] = r_tmp->v[i][j];
r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
u[i * 4 + j] = r_tmp->u[i][j];
v[i * 4 + j] = r_tmp->v[i][j];
ker[i * 4 + j] = du_coeffs[j] * dv_coeffs[i];
}
}
}
......@@ -486,13 +481,14 @@ static inline void calculate_lanczos_coeffs(float t, float *coeffs)
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void lanczos_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
static void lanczos_kernel(float du, float dv, const XYRemap *r_tmp,
uint16_t *u, uint16_t *v, float *ker)
{
XYRemap4 *r = (XYRemap4*)r_void + shift;
int i, j;
float du_coeffs[4];
float dv_coeffs[4];
......@@ -502,9 +498,9 @@ static void lanczos_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp,
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
r->u[i][j] = r_tmp->u[i][j];
r->v[i][j] = r_tmp->v[i][j];
r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
u[i * 4 + j] = r_tmp->u[i][j];
v[i * 4 + j] = r_tmp->v[i][j];
ker[i * 4 + j] = du_coeffs[j] * dv_coeffs[i];
}
}
}
......@@ -1975,8 +1971,9 @@ static int config_output(AVFilterLink *outlink)
V360Context *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
const int depth = desc->comp[0].depth;
float remap_data_size = 0.f;
int sizeof_remap;
int sizeof_uv;
int sizeof_ker;
int elements;
int err;
int p, h, w;
float hf, wf;
......@@ -1987,29 +1984,38 @@ static int config_output(AVFilterLink *outlink)
void (*out_transform)(const V360Context *s,
int i, int j, int width, int height,
float *vec);
void (*calculate_kernel)(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r);
void (*calculate_kernel)(float du, float dv, const XYRemap *r_tmp,
uint16_t *u, uint16_t *v, float *ker);
float rot_mat[3][3];
switch (s->interp) {
case NEAREST:
calculate_kernel = nearest_kernel;
s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
sizeof_remap = sizeof(XYRemap1);
elements = 1;
sizeof_uv = sizeof(uint16_t) * elements;
sizeof_ker = 0;
break;
case BILINEAR:
calculate_kernel = bilinear_kernel;
s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
sizeof_remap = sizeof(XYRemap2);
elements = 2 * 2;
sizeof_uv = sizeof(uint16_t) * elements;
sizeof_ker = sizeof(float) * elements;
break;
case BICUBIC:
calculate_kernel = bicubic_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
sizeof_remap = sizeof(XYRemap4);
elements = 4 * 4;
sizeof_uv = sizeof(uint16_t) * elements;
sizeof_ker = sizeof(float) * elements;
break;
case LANCZOS:
calculate_kernel = lanczos_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
sizeof_remap = sizeof(XYRemap4);
elements = 4 * 4;
sizeof_uv = sizeof(uint16_t) * elements;
sizeof_ker = sizeof(float) * elements;
break;
}
......@@ -2147,15 +2153,13 @@ static int config_output(AVFilterLink *outlink)
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
for (p = 0; p < s->nb_planes; p++) {
remap_data_size += (float)s->planewidth[p] * s->planeheight[p] * sizeof_remap;
}
for (p = 0; p < s->nb_planes; p++) {
s->remap[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_remap);
if (!s->remap[p]) {
av_log(ctx, AV_LOG_ERROR,
"Not enough memory to allocate remap data. Need at least %.3f GiB.\n",
remap_data_size / (1024 * 1024 * 1024));
s->u[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_uv);
s->v[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_uv);
if (!s->u[p] || !s->v[p])
return AVERROR(ENOMEM);
if (sizeof_ker) {
s->ker[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_ker);
if (!s->ker[p])
return AVERROR(ENOMEM);
}
}
......@@ -2169,19 +2173,22 @@ static int config_output(AVFilterLink *outlink)
const int height = s->planeheight[p];
const int in_width = s->inplanewidth[p];
const int in_height = s->inplaneheight[p];
void *r = s->remap[p];
float du, dv;
float vec[3];
XYRemap4 r_tmp;
XYRemap r_tmp;
int i, j;
for (i = 0; i < width; i++) {
for (j = 0; j < height; j++) {
uint16_t *u = s->u[p] + (j * width + i) * elements;
uint16_t *v = s->v[p] + (j * width + i) * elements;
float *ker = s->ker[p] + (j * width + i) * elements;
out_transform(s, i, j, width, height, vec);
rotate(rot_mat, vec);
mirror(mirror_modifier, vec);
in_transform(s, vec, in_width, in_height, r_tmp.u, r_tmp.v, &du, &dv);
calculate_kernel(du, dv, j * width + i, &r_tmp, r);
calculate_kernel(du, dv, &r_tmp, u, v, ker);
}
}
}
......@@ -2218,8 +2225,11 @@ static av_cold void uninit(AVFilterContext *ctx)
V360Context *s = ctx->priv;
int p;
for (p = 0; p < s->nb_planes; p++)
av_freep(&s->remap[p]);
for (p = 0; p < s->nb_planes; p++) {
av_freep(&s->u[p]);
av_freep(&s->v[p]);
av_freep(&s->ker[p]);
}
}
static const AVFilterPad inputs[] = {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment