Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
F
ffmpeg.wasm-core
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Linshizhi
ffmpeg.wasm-core
Commits
0a72533e
Commit
0a72533e
authored
Jul 20, 2011
by
Mans Rullgard
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
jfdctint: add 10-bit version
Signed-off-by:
Mans Rullgard
<
mans@mansr.com
>
parent
73c0dd93
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
454 additions
and
416 deletions
+454
-416
dsputil_bfin.c
libavcodec/bfin/dsputil_bfin.c
+3
-3
dct-test.c
libavcodec/dct-test.c
+1
-1
dsputil.c
libavcodec/dsputil.c
+16
-11
dsputil.h
libavcodec/dsputil.h
+4
-2
jfdctint.c
libavcodec/jfdctint.c
+18
-395
jfdctint_template.c
libavcodec/jfdctint_template.c
+405
-0
mpegvideo_enc.c
libavcodec/mpegvideo_enc.c
+2
-1
dsputil_ppc.c
libavcodec/ppc/dsputil_ppc.c
+3
-2
dsputilenc_mmx.c
libavcodec/x86/dsputilenc_mmx.c
+2
-1
No files found.
libavcodec/bfin/dsputil_bfin.c
View file @
0a72533e
...
...
@@ -253,10 +253,10 @@ void dsputil_init_bfin( DSPContext* c, AVCodecContext *avctx )
/* c->put_no_rnd_pixels_tab[0][3] = ff_bfin_put_pixels16_xy2_nornd; */
}
if
(
avctx
->
dct_algo
==
FF_DCT_AUTO
)
c
->
fdct
=
ff_bfin_fdct
;
if
(
avctx
->
bits_per_raw_sample
<=
8
)
{
if
(
avctx
->
dct_algo
==
FF_DCT_AUTO
)
c
->
fdct
=
ff_bfin_fdct
;
if
(
avctx
->
idct_algo
==
FF_IDCT_VP3
)
{
c
->
idct_permutation_type
=
FF_NO_IDCT_PERM
;
c
->
idct
=
ff_bfin_vp3_idct
;
...
...
libavcodec/dct-test.c
View file @
0a72533e
...
...
@@ -88,7 +88,7 @@ static const struct algo fdct_tab[] = {
{
"REF-DBL"
,
ff_ref_fdct
,
NO_PERM
},
{
"FAAN"
,
ff_faandct
,
FAAN_SCALE
},
{
"IJG-AAN-INT"
,
fdct_ifast
,
SCALE_PERM
},
{
"IJG-LLM-INT"
,
ff_jpeg_fdct_islow
,
NO_PERM
},
{
"IJG-LLM-INT"
,
ff_jpeg_fdct_islow
_8
,
NO_PERM
},
#if HAVE_MMX
{
"MMX"
,
ff_fdct_mmx
,
NO_PERM
,
AV_CPU_FLAG_MMX
},
...
...
libavcodec/dsputil.c
View file @
0a72533e
...
...
@@ -2848,17 +2848,22 @@ av_cold void dsputil_init(DSPContext* c, AVCodecContext *avctx)
ff_check_alignment
();
#if CONFIG_ENCODERS
if
(
avctx
->
dct_algo
==
FF_DCT_FASTINT
)
{
c
->
fdct
=
fdct_ifast
;
c
->
fdct248
=
fdct_ifast248
;
}
else
if
(
avctx
->
dct_algo
==
FF_DCT_FAAN
)
{
c
->
fdct
=
ff_faandct
;
c
->
fdct248
=
ff_faandct248
;
}
else
{
c
->
fdct
=
ff_jpeg_fdct_islow
;
//slow/accurate/default
c
->
fdct248
=
ff_fdct248_islow
;
if
(
avctx
->
bits_per_raw_sample
==
10
)
{
c
->
fdct
=
ff_jpeg_fdct_islow_10
;
c
->
fdct248
=
ff_fdct248_islow_10
;
}
else
{
if
(
avctx
->
dct_algo
==
FF_DCT_FASTINT
)
{
c
->
fdct
=
fdct_ifast
;
c
->
fdct248
=
fdct_ifast248
;
}
else
if
(
avctx
->
dct_algo
==
FF_DCT_FAAN
)
{
c
->
fdct
=
ff_faandct
;
c
->
fdct248
=
ff_faandct248
;
}
else
{
c
->
fdct
=
ff_jpeg_fdct_islow_8
;
//slow/accurate/default
c
->
fdct248
=
ff_fdct248_islow_8
;
}
}
#endif //CONFIG_ENCODERS
...
...
libavcodec/dsputil.h
View file @
0a72533e
...
...
@@ -40,8 +40,10 @@ typedef short DCTELEM;
void
fdct_ifast
(
DCTELEM
*
data
);
void
fdct_ifast248
(
DCTELEM
*
data
);
void
ff_jpeg_fdct_islow
(
DCTELEM
*
data
);
void
ff_fdct248_islow
(
DCTELEM
*
data
);
void
ff_jpeg_fdct_islow_8
(
DCTELEM
*
data
);
void
ff_jpeg_fdct_islow_10
(
DCTELEM
*
data
);
void
ff_fdct248_islow_8
(
DCTELEM
*
data
);
void
ff_fdct248_islow_10
(
DCTELEM
*
data
);
void
j_rev_dct
(
DCTELEM
*
data
);
void
j_rev_dct4
(
DCTELEM
*
data
);
...
...
libavcodec/jfdctint.c
View file @
0a72533e
/*
* jfdctint.c
*
* This file is part of the Independent JPEG Group's software.
*
* The authors make NO WARRANTY or representation, either express or implied,
* with respect to this software, its quality, accuracy, merchantability, or
* fitness for a particular purpose. This software is provided "AS IS", and
* you, its user, assume the entire risk as to its quality and accuracy.
*
* This software is copyright (C) 1991-1996, Thomas G. Lane.
* All Rights Reserved except as specified below.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* software (or portions thereof) for any purpose, without fee, subject to
* these conditions:
* (1) If any part of the source code for this software is distributed, then
* this README file must be included, with this copyright and no-warranty
* notice unaltered; and any additions, deletions, or changes to the original
* files must be clearly indicated in accompanying documentation.
* (2) If only executable code is distributed, then the accompanying
* documentation must state that "this software is based in part on the work
* of the Independent JPEG Group".
* (3) Permission for use of this software is granted only if the user accepts
* full responsibility for any undesirable consequences; the authors accept
* NO LIABILITY for damages of any kind.
*
* These conditions apply to any software derived from or based on the IJG
* code, not just to the unmodified library. If you use our work, you ought
* to acknowledge us.
*
* Permission is NOT granted for the use of any IJG author's name or company
* name in advertising or publicity relating to this software or products
* derived from it. This software may be referred to only as "the Independent
* JPEG Group's software".
*
* We specifically permit and encourage the use of this software as the basis
* of commercial products, provided that all warranty or liability claims are
* assumed by the product vendor.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
/**
* @file
* Independent JPEG Group's slow & accurate dct.
*/
#include <stdlib.h>
#include <stdio.h>
#include "libavutil/common.h"
#include "dsputil.h"
#define DCTSIZE 8
#define BITS_IN_JSAMPLE 8
#define GLOBAL(x) x
#define RIGHT_SHIFT(x, n) ((x) >> (n))
#define MULTIPLY16C16(var,const) ((var)*(const))
#if 1 //def USE_ACCURATE_ROUNDING
#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
#else
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry
,
this
code
only
copes
with
8
x8
DCTs
.
/* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
* This file is part of Libav.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is int32_t anyway.)
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 4
/* set this to 2 if 16x16 multiplies are faster */
#else
#define CONST_BITS 13
#define PASS1_BITS 1
/* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((int32_t) 2446)
/* FIX(0.298631336) */
#define FIX_0_390180644 ((int32_t) 3196)
/* FIX(0.390180644) */
#define FIX_0_541196100 ((int32_t) 4433)
/* FIX(0.541196100) */
#define FIX_0_765366865 ((int32_t) 6270)
/* FIX(0.765366865) */
#define FIX_0_899976223 ((int32_t) 7373)
/* FIX(0.899976223) */
#define FIX_1_175875602 ((int32_t) 9633)
/* FIX(1.175875602) */
#define FIX_1_501321110 ((int32_t) 12299)
/* FIX(1.501321110) */
#define FIX_1_847759065 ((int32_t) 15137)
/* FIX(1.847759065) */
#define FIX_1_961570560 ((int32_t) 16069)
/* FIX(1.961570560) */
#define FIX_2_053119869 ((int32_t) 16819)
/* FIX(2.053119869) */
#define FIX_2_562915447 ((int32_t) 20995)
/* FIX(2.562915447) */
#define FIX_3_072711026 ((int32_t) 25172)
/* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
static
av_always_inline
void
row_fdct
(
DCTELEM
*
data
){
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
,
z2
,
z3
,
z4
,
z5
;
DCTELEM
*
dataptr
;
int
ctr
;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
0
]
+
dataptr
[
7
];
tmp7
=
dataptr
[
0
]
-
dataptr
[
7
];
tmp1
=
dataptr
[
1
]
+
dataptr
[
6
];
tmp6
=
dataptr
[
1
]
-
dataptr
[
6
];
tmp2
=
dataptr
[
2
]
+
dataptr
[
5
];
tmp5
=
dataptr
[
2
]
-
dataptr
[
5
];
tmp3
=
dataptr
[
3
]
+
dataptr
[
4
];
tmp4
=
dataptr
[
3
]
-
dataptr
[
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
0
]
=
(
DCTELEM
)
((
tmp10
+
tmp11
)
<<
PASS1_BITS
);
dataptr
[
4
]
=
(
DCTELEM
)
((
tmp10
-
tmp11
)
<<
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
-
PASS1_BITS
);
dataptr
[
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
-
PASS1_BITS
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
7
]
=
(
DCTELEM
)
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
5
]
=
(
DCTELEM
)
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
3
]
=
(
DCTELEM
)
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
1
]
=
(
DCTELEM
)
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
+=
DCTSIZE
;
/* advance pointer to next row */
}
}
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL
(
void
)
ff_jpeg_fdct_islow
(
DCTELEM
*
data
)
{
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
,
z2
,
z3
,
z4
,
z5
;
DCTELEM
*
dataptr
;
int
ctr
;
row_fdct
(
data
);
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
DCTSIZE
*
0
]
+
dataptr
[
DCTSIZE
*
7
];
tmp7
=
dataptr
[
DCTSIZE
*
0
]
-
dataptr
[
DCTSIZE
*
7
];
tmp1
=
dataptr
[
DCTSIZE
*
1
]
+
dataptr
[
DCTSIZE
*
6
];
tmp6
=
dataptr
[
DCTSIZE
*
1
]
-
dataptr
[
DCTSIZE
*
6
];
tmp2
=
dataptr
[
DCTSIZE
*
2
]
+
dataptr
[
DCTSIZE
*
5
];
tmp5
=
dataptr
[
DCTSIZE
*
2
]
-
dataptr
[
DCTSIZE
*
5
];
tmp3
=
dataptr
[
DCTSIZE
*
3
]
+
dataptr
[
DCTSIZE
*
4
];
tmp4
=
dataptr
[
DCTSIZE
*
3
]
-
dataptr
[
DCTSIZE
*
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
DCTSIZE
*
0
]
=
(
DCTELEM
)
DESCALE
(
tmp10
+
tmp11
,
PASS1_BITS
);
dataptr
[
DCTSIZE
*
4
]
=
(
DCTELEM
)
DESCALE
(
tmp10
-
tmp11
,
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
PASS1_BITS
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
DCTSIZE
*
7
]
=
(
DCTELEM
)
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
5
]
=
(
DCTELEM
)
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
3
]
=
(
DCTELEM
)
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
1
]
=
(
DCTELEM
)
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
+
PASS1_BITS
);
dataptr
++
;
/* advance pointer to next column */
}
}
/*
* The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
* on the rows and then, instead of doing even and odd, part on the colums
* you do even part two times.
*/
GLOBAL
(
void
)
ff_fdct248_islow
(
DCTELEM
*
data
)
{
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
;
DCTELEM
*
dataptr
;
int
ctr
;
row_fdct
(
data
);
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
DCTSIZE
*
0
]
+
dataptr
[
DCTSIZE
*
1
];
tmp1
=
dataptr
[
DCTSIZE
*
2
]
+
dataptr
[
DCTSIZE
*
3
];
tmp2
=
dataptr
[
DCTSIZE
*
4
]
+
dataptr
[
DCTSIZE
*
5
];
tmp3
=
dataptr
[
DCTSIZE
*
6
]
+
dataptr
[
DCTSIZE
*
7
];
tmp4
=
dataptr
[
DCTSIZE
*
0
]
-
dataptr
[
DCTSIZE
*
1
];
tmp5
=
dataptr
[
DCTSIZE
*
2
]
-
dataptr
[
DCTSIZE
*
3
];
tmp6
=
dataptr
[
DCTSIZE
*
4
]
-
dataptr
[
DCTSIZE
*
5
];
tmp7
=
dataptr
[
DCTSIZE
*
6
]
-
dataptr
[
DCTSIZE
*
7
];
tmp10
=
tmp0
+
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
tmp13
=
tmp0
-
tmp3
;
dataptr
[
DCTSIZE
*
0
]
=
(
DCTELEM
)
DESCALE
(
tmp10
+
tmp11
,
PASS1_BITS
);
dataptr
[
DCTSIZE
*
4
]
=
(
DCTELEM
)
DESCALE
(
tmp10
-
tmp11
,
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
PASS1_BITS
);
tmp10
=
tmp4
+
tmp7
;
tmp11
=
tmp5
+
tmp6
;
tmp12
=
tmp5
-
tmp6
;
tmp13
=
tmp4
-
tmp7
;
dataptr
[
DCTSIZE
*
1
]
=
(
DCTELEM
)
DESCALE
(
tmp10
+
tmp11
,
PASS1_BITS
);
dataptr
[
DCTSIZE
*
5
]
=
(
DCTELEM
)
DESCALE
(
tmp10
-
tmp11
,
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
3
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
7
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
PASS1_BITS
);
#define BIT_DEPTH 8
#include "jfdctint_template.c"
#undef BIT_DEPTH
dataptr
++
;
/* advance pointer to next column */
}
}
#define BIT_DEPTH 10
#include "jfdctint_template.c"
#undef BIT_DEPTH
libavcodec/jfdctint_template.c
0 → 100644
View file @
0a72533e
/*
* jfdctint.c
*
* This file is part of the Independent JPEG Group's software.
*
* The authors make NO WARRANTY or representation, either express or implied,
* with respect to this software, its quality, accuracy, merchantability, or
* fitness for a particular purpose. This software is provided "AS IS", and
* you, its user, assume the entire risk as to its quality and accuracy.
*
* This software is copyright (C) 1991-1996, Thomas G. Lane.
* All Rights Reserved except as specified below.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* software (or portions thereof) for any purpose, without fee, subject to
* these conditions:
* (1) If any part of the source code for this software is distributed, then
* this README file must be included, with this copyright and no-warranty
* notice unaltered; and any additions, deletions, or changes to the original
* files must be clearly indicated in accompanying documentation.
* (2) If only executable code is distributed, then the accompanying
* documentation must state that "this software is based in part on the work
* of the Independent JPEG Group".
* (3) Permission for use of this software is granted only if the user accepts
* full responsibility for any undesirable consequences; the authors accept
* NO LIABILITY for damages of any kind.
*
* These conditions apply to any software derived from or based on the IJG
* code, not just to the unmodified library. If you use our work, you ought
* to acknowledge us.
*
* Permission is NOT granted for the use of any IJG author's name or company
* name in advertising or publicity relating to this software or products
* derived from it. This software may be referred to only as "the Independent
* JPEG Group's software".
*
* We specifically permit and encourage the use of this software as the basis
* of commercial products, provided that all warranty or liability claims are
* assumed by the product vendor.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
/**
* @file
* Independent JPEG Group's slow & accurate dct.
*/
#include "libavutil/common.h"
#include "dsputil.h"
#include "bit_depth_template.c"
#define DCTSIZE 8
#define BITS_IN_JSAMPLE BIT_DEPTH
#define GLOBAL(x) x
#define RIGHT_SHIFT(x, n) ((x) >> (n))
#define MULTIPLY16C16(var,const) ((var)*(const))
#if 1 //def USE_ACCURATE_ROUNDING
#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
#else
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
#error "Sorry, this code only copes with 8x8 DCTs."
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is int32_t anyway.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#undef CONST_BITS
#undef PASS1_BITS
#undef OUT_SHIFT
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 4
/* set this to 2 if 16x16 multiplies are faster */
#define OUT_SHIFT PASS1_BITS
#else
#define CONST_BITS 13
#define PASS1_BITS 1
/* lose a little precision to avoid overflow */
#define OUT_SHIFT (PASS1_BITS + 1)
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((int32_t) 2446)
/* FIX(0.298631336) */
#define FIX_0_390180644 ((int32_t) 3196)
/* FIX(0.390180644) */
#define FIX_0_541196100 ((int32_t) 4433)
/* FIX(0.541196100) */
#define FIX_0_765366865 ((int32_t) 6270)
/* FIX(0.765366865) */
#define FIX_0_899976223 ((int32_t) 7373)
/* FIX(0.899976223) */
#define FIX_1_175875602 ((int32_t) 9633)
/* FIX(1.175875602) */
#define FIX_1_501321110 ((int32_t) 12299)
/* FIX(1.501321110) */
#define FIX_1_847759065 ((int32_t) 15137)
/* FIX(1.847759065) */
#define FIX_1_961570560 ((int32_t) 16069)
/* FIX(1.961570560) */
#define FIX_2_053119869 ((int32_t) 16819)
/* FIX(2.053119869) */
#define FIX_2_562915447 ((int32_t) 20995)
/* FIX(2.562915447) */
#define FIX_3_072711026 ((int32_t) 25172)
/* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
static
av_always_inline
void
FUNC
(
row_fdct
)(
DCTELEM
*
data
)
{
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
,
z2
,
z3
,
z4
,
z5
;
DCTELEM
*
dataptr
;
int
ctr
;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
0
]
+
dataptr
[
7
];
tmp7
=
dataptr
[
0
]
-
dataptr
[
7
];
tmp1
=
dataptr
[
1
]
+
dataptr
[
6
];
tmp6
=
dataptr
[
1
]
-
dataptr
[
6
];
tmp2
=
dataptr
[
2
]
+
dataptr
[
5
];
tmp5
=
dataptr
[
2
]
-
dataptr
[
5
];
tmp3
=
dataptr
[
3
]
+
dataptr
[
4
];
tmp4
=
dataptr
[
3
]
-
dataptr
[
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
0
]
=
(
DCTELEM
)
((
tmp10
+
tmp11
)
<<
PASS1_BITS
);
dataptr
[
4
]
=
(
DCTELEM
)
((
tmp10
-
tmp11
)
<<
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
-
PASS1_BITS
);
dataptr
[
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
-
PASS1_BITS
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
7
]
=
(
DCTELEM
)
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
5
]
=
(
DCTELEM
)
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
3
]
=
(
DCTELEM
)
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
1
]
=
(
DCTELEM
)
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
+=
DCTSIZE
;
/* advance pointer to next row */
}
}
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL
(
void
)
FUNC
(
ff_jpeg_fdct_islow
)(
DCTELEM
*
data
)
{
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
,
z2
,
z3
,
z4
,
z5
;
DCTELEM
*
dataptr
;
int
ctr
;
FUNC
(
row_fdct
)(
data
);
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
DCTSIZE
*
0
]
+
dataptr
[
DCTSIZE
*
7
];
tmp7
=
dataptr
[
DCTSIZE
*
0
]
-
dataptr
[
DCTSIZE
*
7
];
tmp1
=
dataptr
[
DCTSIZE
*
1
]
+
dataptr
[
DCTSIZE
*
6
];
tmp6
=
dataptr
[
DCTSIZE
*
1
]
-
dataptr
[
DCTSIZE
*
6
];
tmp2
=
dataptr
[
DCTSIZE
*
2
]
+
dataptr
[
DCTSIZE
*
5
];
tmp5
=
dataptr
[
DCTSIZE
*
2
]
-
dataptr
[
DCTSIZE
*
5
];
tmp3
=
dataptr
[
DCTSIZE
*
3
]
+
dataptr
[
DCTSIZE
*
4
];
tmp4
=
dataptr
[
DCTSIZE
*
3
]
-
dataptr
[
DCTSIZE
*
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
DCTSIZE
*
0
]
=
DESCALE
(
tmp10
+
tmp11
,
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
4
]
=
DESCALE
(
tmp10
-
tmp11
,
OUT_SHIFT
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
2
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
6
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
OUT_SHIFT
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
DCTSIZE
*
7
]
=
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
5
]
=
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
3
]
=
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
1
]
=
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
+
OUT_SHIFT
);
dataptr
++
;
/* advance pointer to next column */
}
}
/*
* The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
* on the rows and then, instead of doing even and odd, part on the colums
* you do even part two times.
*/
GLOBAL
(
void
)
FUNC
(
ff_fdct248_islow
)(
DCTELEM
*
data
)
{
int
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
int
tmp10
,
tmp11
,
tmp12
,
tmp13
;
int
z1
;
DCTELEM
*
dataptr
;
int
ctr
;
FUNC
(
row_fdct
)(
data
);
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
DCTSIZE
*
0
]
+
dataptr
[
DCTSIZE
*
1
];
tmp1
=
dataptr
[
DCTSIZE
*
2
]
+
dataptr
[
DCTSIZE
*
3
];
tmp2
=
dataptr
[
DCTSIZE
*
4
]
+
dataptr
[
DCTSIZE
*
5
];
tmp3
=
dataptr
[
DCTSIZE
*
6
]
+
dataptr
[
DCTSIZE
*
7
];
tmp4
=
dataptr
[
DCTSIZE
*
0
]
-
dataptr
[
DCTSIZE
*
1
];
tmp5
=
dataptr
[
DCTSIZE
*
2
]
-
dataptr
[
DCTSIZE
*
3
];
tmp6
=
dataptr
[
DCTSIZE
*
4
]
-
dataptr
[
DCTSIZE
*
5
];
tmp7
=
dataptr
[
DCTSIZE
*
6
]
-
dataptr
[
DCTSIZE
*
7
];
tmp10
=
tmp0
+
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
tmp13
=
tmp0
-
tmp3
;
dataptr
[
DCTSIZE
*
0
]
=
DESCALE
(
tmp10
+
tmp11
,
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
4
]
=
DESCALE
(
tmp10
-
tmp11
,
OUT_SHIFT
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
2
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
6
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
OUT_SHIFT
);
tmp10
=
tmp4
+
tmp7
;
tmp11
=
tmp5
+
tmp6
;
tmp12
=
tmp5
-
tmp6
;
tmp13
=
tmp4
-
tmp7
;
dataptr
[
DCTSIZE
*
1
]
=
DESCALE
(
tmp10
+
tmp11
,
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
5
]
=
DESCALE
(
tmp10
-
tmp11
,
OUT_SHIFT
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
3
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
OUT_SHIFT
);
dataptr
[
DCTSIZE
*
7
]
=
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
OUT_SHIFT
);
dataptr
++
;
/* advance pointer to next column */
}
}
libavcodec/mpegvideo_enc.c
View file @
0a72533e
...
...
@@ -69,7 +69,8 @@ void ff_convert_matrix(DSPContext *dsp, int (*qmat)[64], uint16_t (*qmat16)[2][6
for
(
qscale
=
qmin
;
qscale
<=
qmax
;
qscale
++
){
int
i
;
if
(
dsp
->
fdct
==
ff_jpeg_fdct_islow
if
(
dsp
->
fdct
==
ff_jpeg_fdct_islow_8
||
dsp
->
fdct
==
ff_jpeg_fdct_islow_10
#ifdef FAAN_POSTSCALE
||
dsp
->
fdct
==
ff_faandct
#endif
...
...
libavcodec/ppc/dsputil_ppc.c
View file @
0a72533e
...
...
@@ -172,8 +172,9 @@ void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx)
c
->
gmc1
=
gmc1_altivec
;
#if CONFIG_ENCODERS
if
(
avctx
->
dct_algo
==
FF_DCT_AUTO
||
avctx
->
dct_algo
==
FF_DCT_ALTIVEC
)
{
if
(
avctx
->
bits_per_raw_sample
<=
8
&&
(
avctx
->
dct_algo
==
FF_DCT_AUTO
||
avctx
->
dct_algo
==
FF_DCT_ALTIVEC
))
{
c
->
fdct
=
fdct_altivec
;
}
#endif //CONFIG_ENCODERS
...
...
libavcodec/x86/dsputilenc_mmx.c
View file @
0a72533e
...
...
@@ -1101,7 +1101,8 @@ void dsputilenc_init_mmx(DSPContext* c, AVCodecContext *avctx)
if
(
mm_flags
&
AV_CPU_FLAG_MMX
)
{
const
int
dct_algo
=
avctx
->
dct_algo
;
if
(
dct_algo
==
FF_DCT_AUTO
||
dct_algo
==
FF_DCT_MMX
){
if
(
avctx
->
bits_per_raw_sample
<=
8
&&
(
dct_algo
==
FF_DCT_AUTO
||
dct_algo
==
FF_DCT_MMX
))
{
if
(
mm_flags
&
AV_CPU_FLAG_SSE2
){
c
->
fdct
=
ff_fdct_sse2
;
}
else
if
(
mm_flags
&
AV_CPU_FLAG_MMX2
){
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment