Commit 0a19538b authored by Paul B Mahol's avatar Paul B Mahol

avfilter: add SOFAlizer audio filter

Signed-off-by: 's avatarPaul B Mahol <onemda@gmail.com>
parent 69e80d6c
......@@ -44,6 +44,7 @@ version <next>:
- mips32r5 option has been removed
- mips64r6 option has been removed
- DXVA2-accelerated VP9 decoding
- SOFAlizer: virtual binaural acoustics filter
version 2.8:
......
......@@ -279,6 +279,7 @@ External library support:
--disable-lzma disable lzma [autodetect]
--enable-decklink enable Blackmagic DeckLink I/O support [no]
--enable-mmal enable decoding via MMAL [no]
--enable-netcdf enable NetCDF, needed for sofalizer filter [no]
--enable-nvenc enable NVIDIA NVENC support [no]
--enable-openal enable OpenAL 1.1 capture support [no]
--enable-opencl enable OpenCL code
......@@ -1503,6 +1504,7 @@ EXTERNAL_LIBRARY_LIST="
libzvbi
lzma
mmal
netcdf
nvenc
openal
opencl
......@@ -2890,6 +2892,7 @@ showfreqs_filter_deps="avcodec"
showfreqs_filter_select="fft"
showspectrum_filter_deps="avcodec"
showspectrum_filter_select="rdft"
sofalizer_filter_deps="netcdf"
spp_filter_deps="gpl avcodec"
spp_filter_select="fft idctdsp fdctdsp me_cmp pixblockdsp"
stereo3d_filter_deps="gpl"
......@@ -5494,6 +5497,7 @@ enabled mmal && { check_lib interface/mmal/mmal.h mmal_port_connect
check_lib interface/mmal/mmal.h mmal_port_connect ; }
check_lib interface/mmal/mmal.h mmal_port_connect ; } ||
die "ERROR: mmal not found"; }
enabled netcdf && require_pkg_config netcdf netcdf.h nc_inq_libvers
enabled nvenc && { check_header nvEncodeAPI.h || die "ERROR: nvEncodeAPI.h not found."; } &&
{ check_cpp_condition nvEncodeAPI.h "NVENCAPI_MAJOR_VERSION >= 5" ||
die "ERROR: NVENC API version 4 or older is not supported"; } &&
......
......@@ -2889,6 +2889,35 @@ silenceremove=1:5:0.02
@end example
@end itemize
@section sofalizer
SOFAlizer uses head-related transfer functions (HRTFs) to create virtual
loudspeakers around the user for binaural listening via headphones (audio
formats up to 9 channels supported).
The HRTFs are stored in SOFA files (see www.sofacoustics.org for a database).
SOFAlizer is developed at the Acoustics Research Institute (ARI) of the
Austrian Academy of Sciences.
The filter accepts the following options:
@table @option
@item sofa
Set the SOFA file used for rendering.
@item gain
Set gain applied to audio. Value is in dB. Default is 0.
@item rotation
Set rotation of virtual loudspeakers in deg. Default is 0.
@item elevation
Set elevation of virtual speakers in deg. Default is 0.
@item radius
Set distance in meters between loudspeakers and the listener with near-field
HRTFs. Default is 1.
@end table
@section stereotools
This filter has some handy utilities to manage stereo signals, for converting
......
......@@ -87,6 +87,7 @@ OBJS-$(CONFIG_SIDECHAINCOMPRESS_FILTER) += af_sidechaincompress.o
OBJS-$(CONFIG_SIDECHAINGATE_FILTER) += af_agate.o
OBJS-$(CONFIG_SILENCEDETECT_FILTER) += af_silencedetect.o
OBJS-$(CONFIG_SILENCEREMOVE_FILTER) += af_silenceremove.o
OBJS-$(CONFIG_SOFALIZER_FILTER) += af_sofalizer.o
OBJS-$(CONFIG_STEREOTOOLS_FILTER) += af_stereotools.o
OBJS-$(CONFIG_STEREOWIDEN_FILTER) += af_stereowiden.o
OBJS-$(CONFIG_TREBLE_FILTER) += af_biquads.o
......
/*****************************************************************************
* sofalizer.c : SOFAlizer filter for virtual binaural acoustics
*****************************************************************************
* Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda,
* Acoustics Research Institute (ARI), Vienna, Austria
*
* Authors: Andreas Fuchs <andi.fuchs.mail@gmail.com>
* Wolfgang Hrauda <wolfgang.hrauda@gmx.at>
*
* SOFAlizer project coordinator at ARI, main developer of SOFA:
* Piotr Majdak <piotr@majdak.at>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
*****************************************************************************/
#include <math.h>
#include <netcdf.h>
#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "internal.h"
#include "audio.h"
typedef struct NCSofa { /* contains data of one SOFA file */
int ncid; /* netCDF ID of the opened SOFA file */
int n_samples; /* length of one impulse response (IR) */
int m_dim; /* number of measurement positions */
int *data_delay; /* broadband delay of each IR */
/* all measurement positions for each receiver (i.e. ear): */
float *sp_a; /* azimuth angles */
float *sp_e; /* elevation angles */
float *sp_r; /* radii */
/* data at each measurement position for each receiver: */
float *data_ir; /* IRs (time-domain) */
} NCSofa;
typedef struct SOFAlizerContext {
const AVClass *class;
char *filename; /* name of SOFA file */
NCSofa sofa; /* contains data of the SOFA file */
const int8_t *reorder; /* reorder in SOFA channel order */
int sample_rate; /* sample rate from SOFA file */
float *speaker_pos; /* positions of the virtual loudspekaers */
float gain_lfe; /* gain applied to LFE channel */
int n_conv; /* number of channels to convolute */
/* buffer variables (for convolution) */
float *ringbuffer[2]; /* buffers input samples, length of one buffer: */
/* no. input ch. (incl. LFE) x buffer_length */
int write[2]; /* current write position to ringbuffer */
int buffer_length; /* is: longest IR plus max. delay in all SOFA files */
/* then choose next power of 2 */
/* netCDF variables */
int *delay[2]; /* broadband delay for each channel/IR to be convolved */
float *data_ir[2]; /* IRs for all channels to be convolved */
/* (this excludes the LFE) */
float *temp_src[2];
/* control variables */
float gain; /* filter gain (in dB) */
float rotation; /* rotation of virtual loudspeakers (in degrees) */
float elevation; /* elevation of virtual loudspeakers (in deg.) */
float radius; /* distance virtual loudspeakers to listener (in metres) */
int lfe; /* whether or not the LFE channel is used */
AVFloatDSPContext *fdsp;
} SOFAlizerContext;
static int close_sofa(struct NCSofa *sofa)
{
av_freep(&sofa->data_delay);
av_freep(&sofa->sp_a);
av_freep(&sofa->sp_e);
av_freep(&sofa->sp_r);
av_freep(&sofa->data_ir);
nc_close(sofa->ncid);
sofa->ncid = 0;
return 0;
}
static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
{
struct SOFAlizerContext *s = ctx->priv;
/* variables associated with content of SOFA file: */
int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status;
char data_delay_dim_name[NC_MAX_NAME];
float *sp_a, *sp_e, *sp_r, *data_ir;
char *sofa_conventions;
char dim_name[NC_MAX_NAME]; /* names of netCDF dimensions */
size_t *dim_length; /* lengths of netCDF dimensions */
char *psz_conventions;
unsigned int sample_rate;
int data_delay_dim_id[2];
int samplingrate_id;
int data_delay_id;
int n_samples;
int m_dim_id = -1;
int n_dim_id = -1;
int data_ir_id;
size_t att_len;
int m_dim;
int *data_delay;
int sp_id;
int i, ret;
s->sofa.ncid = 0;
status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
return AVERROR(EINVAL);
}
/* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */
nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id);
/* -- get number of measurements ("M") and length of one IR ("N") -- */
dim_length = av_malloc_array(n_dims, sizeof(*dim_length));
if (!dim_length) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */
nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */
if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */
m_dim_id = i;
if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */
n_dim_id = i;
}
if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */
av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n");
av_freep(&dim_length);
nc_close(ncid);
return AVERROR(EINVAL);
}
n_samples = dim_length[n_dim_id]; /* get number of measurements */
m_dim = dim_length[m_dim_id]; /* get length of one IR */
av_freep(&dim_length);
/* -- check file type -- */
/* get length of attritube "Conventions" */
status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n");
nc_close(ncid);
return AVERROR_INVALIDDATA;
}
/* check whether file is SOFA file */
psz_conventions = av_malloc(att_len + 1);
if (!psz_conventions) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
nc_get_att_text(ncid, NC_GLOBAL, "Conventions", psz_conventions);
*(psz_conventions + att_len) = 0;
if (strncmp("SOFA", psz_conventions, 4)) {
av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n");
av_freep(&psz_conventions);
nc_close(ncid);
return AVERROR(EINVAL);
}
av_freep(&psz_conventions);
status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n");
nc_close(ncid);
return AVERROR_INVALIDDATA;
}
sofa_conventions = av_malloc(att_len + 1);
if (!sofa_conventions) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions);
*(sofa_conventions + att_len) = 0;
if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) {
av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n");
av_freep(&sofa_conventions);
nc_close(ncid);
return AVERROR(EINVAL);
}
av_freep(&sofa_conventions);
/* -- get sampling rate of HRTFs -- */
/* read ID, then value */
status = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id);
status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n");
nc_close(ncid);
return AVERROR(EINVAL);
}
*samplingrate = sample_rate; /* remember sampling rate */
/* -- allocate memory for one value for each measurement position: -- */
sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float));
sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float));
sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float));
/* delay and IR values required for each ear and measurement position: */
data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int));
data_ir = s->sofa.data_ir = av_malloc_array(m_dim * n_samples, sizeof(float) * 2);
s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir ||
!s->temp_src[0] || !s->temp_src[1]) {
/* if memory could not be allocated */
close_sofa(&s->sofa);
return AVERROR(ENOMEM);
}
/* get impulse responses (HRTFs): */
/* get corresponding ID */
status = nc_inq_varid(ncid, "Data.IR", &data_ir_id);
status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n");
ret = AVERROR(EINVAL);
goto error;
}
/* get source positions of the HRTFs in the SOFA file: */
status = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } ,
(size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } ,
(size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } ,
(size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */
if (status != NC_NOERR) { /* if any source position variable coudn't be read */
av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n");
ret = AVERROR(EINVAL);
goto error;
}
/* read Data.Delay, check for errors and fit it to data_delay */
status = nc_inq_varid(ncid, "Data.Delay", &data_delay_id);
status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]);
status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n");
ret = AVERROR(EINVAL);
goto error;
}
/* Data.Delay dimension check */
/* dimension of Data.Delay is [I R]: */
if (!strncmp(data_delay_dim_name, "I", 2)) {
/* check 2 characters to assure string is 0-terminated after "I" */
int delay[2]; /* delays get from SOFA file: */
av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n");
status = nc_get_var_int(ncid, data_delay_id, &delay[0]);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
ret = AVERROR(EINVAL);
goto error;
}
int *data_delay_r = data_delay + m_dim;
for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */
/* assign constant delay value for all measurements to data_delay fields */
data_delay[i] = delay[0];
data_delay_r[i] = delay[1];
}
/* dimension of Data.Delay is [M R] */
} else if (!strncmp(data_delay_dim_name, "M", 2)) {
av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n");
/* get delays from SOFA file: */
status = nc_get_var_int(ncid, data_delay_id, data_delay);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
ret = AVERROR(EINVAL);
goto error;
}
} else { /* dimension of Data.Delay is neither [I R] nor [M R] */
av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n");
ret = AVERROR(EINVAL);
goto error;
}
/* save information in SOFA struct: */
s->sofa.m_dim = m_dim; /* no. measurement positions */
s->sofa.n_samples = n_samples; /* length on one IR */
s->sofa.ncid = ncid; /* netCDF ID of SOFA file */
nc_close(ncid); /* close SOFA file */
return 0;
error:
close_sofa(&s->sofa);
return ret;
}
static const int8_t reorder[18][9] = {
{ 0, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 2, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 2, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 2, 3, -1, -1, -1, -1, -1 },
{ 0, 1, 2, 3, -1, -1, -1, -1, -1 },
{ 0, 1, 2, 3, -1, -1, -1, -1, -1 },
{ 0, 1, 3, 4, 2, -1, -1, -1, -1 },
{ 0, 1, 3, 4, 2, -1, -1, -1, -1 },
{ 0, 1, 4, 5, 2, 3, -1, -1, -1 },
{ 0, 1, 4, 5, 2, 3, -1, -1, -1 },
{ 0, 1, 5, 6, 4, 2, 3, -1, -1 },
{ 0, 1, 5, 6, 3, 4, 2, -1, -1 },
{ 0, 1, 6, 7, 4, 5, 2, 3, -1 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8 },
{ 0, 1, 2, 3, 4, 5, 6, 7, -1 },
{ 0, 1, 3, 4, 2, 5, -1, -1, -1 },
{ 0, 1, 4, 5, 2, 6, 3, -1, -1 },
};
static int get_speaker_pos(AVFilterContext *ctx, float *speaker_pos)
{
struct SOFAlizerContext *s = ctx->priv;
uint64_t channels_layout = ctx->inputs[0]->channel_layout;
float pos_temp[9];
int nb_input_channels = ctx->inputs[0]->channels; /* get no. input channels */
int n_conv = nb_input_channels;
if (channels_layout & AV_CH_LOW_FREQUENCY) { /* if LFE is used */
/* decrease number of channels to be convolved: */
n_conv = nb_input_channels - 1;
}
/* set speaker positions according to input channel configuration: */
switch (channels_layout) {
case AV_CH_LAYOUT_MONO:
pos_temp[0] = 0;
break;
case AV_CH_LAYOUT_STEREO:
case AV_CH_LAYOUT_2POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
break;
case AV_CH_LAYOUT_SURROUND:
case AV_CH_LAYOUT_3POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 0;
break;
case AV_CH_LAYOUT_2_1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 180;
break;
case AV_CH_LAYOUT_2_2:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 90;
pos_temp[3] = 270;
break;
case AV_CH_LAYOUT_QUAD:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 120;
pos_temp[3] = 240;
break;
case AV_CH_LAYOUT_4POINT0:
case AV_CH_LAYOUT_4POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 0;
pos_temp[3] = 180;
break;
case AV_CH_LAYOUT_5POINT0:
case AV_CH_LAYOUT_5POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 90;
pos_temp[3] = 270;
pos_temp[4] = 0;
break;
case AV_CH_LAYOUT_5POINT0_BACK:
case AV_CH_LAYOUT_5POINT1_BACK:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 120;
pos_temp[3] = 240;
pos_temp[4] = 0;
break;
case AV_CH_LAYOUT_6POINT0:
case AV_CH_LAYOUT_6POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 90;
pos_temp[3] = 270;
pos_temp[4] = 0;
pos_temp[5] = 180;
break;
case AV_CH_LAYOUT_6POINT1_BACK:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 120;
pos_temp[3] = 240;
pos_temp[4] = 0;
pos_temp[4] = 180;
break;
case AV_CH_LAYOUT_HEXAGONAL:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 120;
pos_temp[3] = 240;
pos_temp[4] = 0;
pos_temp[5] = 180;
break;
case AV_CH_LAYOUT_7POINT0:
case AV_CH_LAYOUT_7POINT1:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 90;
pos_temp[3] = 270;
pos_temp[4] = 150;
pos_temp[5] = 210;
pos_temp[6] = 0;
break;
case AV_CH_LAYOUT_OCTAGONAL:
pos_temp[0] = 30;
pos_temp[1] = 330;
pos_temp[2] = 0;
pos_temp[3] = 150;
pos_temp[4] = 210;
pos_temp[5] = 180;
pos_temp[6] = 90;
pos_temp[7] = 270;
break;
default:
return -1;
}
switch (channels_layout) {
case AV_CH_LAYOUT_MONO:
s->reorder = reorder[0];
break;
case AV_CH_LAYOUT_STEREO:
s->reorder = reorder[1];
break;
case AV_CH_LAYOUT_2_1:
case AV_CH_LAYOUT_2POINT1:
s->reorder = reorder[2];
break;
case AV_CH_LAYOUT_SURROUND:
s->reorder = reorder[3];
break;
case AV_CH_LAYOUT_3POINT1:
case AV_CH_LAYOUT_2_2:
s->reorder = reorder[4];
break;
case AV_CH_LAYOUT_QUAD:
s->reorder = reorder[5];
break;
case AV_CH_LAYOUT_4POINT0:
s->reorder = reorder[6];
break;
case AV_CH_LAYOUT_4POINT1:
s->reorder = reorder[7];
break;
case AV_CH_LAYOUT_5POINT0:
case AV_CH_LAYOUT_5POINT0_BACK:
s->reorder = reorder[8];
break;
case AV_CH_LAYOUT_5POINT1:
case AV_CH_LAYOUT_5POINT1_BACK:
s->reorder = reorder[9];
break;
case AV_CH_LAYOUT_6POINT0:
s->reorder = reorder[10];
break;
case AV_CH_LAYOUT_HEXAGONAL:
s->reorder = reorder[16];
break;
case AV_CH_LAYOUT_6POINT1:
s->reorder = reorder[11];
break;
case AV_CH_LAYOUT_6POINT1_BACK:
s->reorder = reorder[17];
break;
case AV_CH_LAYOUT_7POINT0:
s->reorder = reorder[12];
break;
case AV_CH_LAYOUT_7POINT1:
s->reorder = reorder[13];
break;
case AV_CH_LAYOUT_OCTAGONAL:
s->reorder = reorder[15];
break;
default:
return -1;
}
memcpy(speaker_pos, pos_temp, n_conv * sizeof(float));
return 0;
}
static int max_delay(struct NCSofa *sofa)
{
int i, max = 0;
for (i = 0; i < sofa->m_dim * 2; i++) {
/* search maximum delay in given SOFA file */
max = FFMAX(max, sofa->data_delay[i]);
}
return max;
}
static int find_m(SOFAlizerContext *s, int azim, int elev, float radius)
{
/* get source positions and M of currently selected SOFA file */
float *sp_a = s->sofa.sp_a; /* azimuth angle */
float *sp_e = s->sofa.sp_e; /* elevation angle */
float *sp_r = s->sofa.sp_r; /* radius */
int m_dim = s->sofa.m_dim; /* no. measurements */
int best_id = 0; /* index m currently closest to desired source pos. */
float delta = 1000; /* offset between desired and currently best pos. */
float current;
int i;
for (i = 0; i < m_dim; i++) {
/* search through all measurements in currently selected SOFA file */
/* distance of current to desired source position: */
current = fabs(sp_a[i] - azim) +
fabs(sp_e[i] - elev) +
fabs(sp_r[i] - radius);
if (current <= delta) {
/* if current distance is smaller than smallest distance so far */
delta = current;
best_id = i; /* remember index */
}
}
return best_id;
}
static int compensate_volume(AVFilterContext *ctx)
{
struct SOFAlizerContext *s = ctx->priv;
float compensate;
float energy = 0;
float *ir;
int m, j;
if (s->sofa.ncid) {
/* find IR at front center position in the SOFA file (IR closest to 0°,0°,1m) */
struct NCSofa *sofa = &s->sofa;
m = find_m(s, 0, 0, 1);
/* get energy of that IR and compensate volume */
ir = sofa->data_ir + 2 * m * sofa->n_samples;
for (j = 0; j < sofa->n_samples; j++) {
energy += *(ir + j) * *(ir + j);
}
compensate = 256 / (sofa->n_samples * sqrt(energy));
av_log(ctx, AV_LOG_DEBUG, "Compensate-factor: %f\n", compensate);
ir = sofa->data_ir;
for (j = 0; j < sofa->n_samples * sofa->m_dim * 2; j++) {
ir[j] *= compensate; /* apply volume compensation to IRs */
}
}
return 0;
}
typedef struct ThreadData {
AVFrame *in, *out;
int *write;
int **delay;
float **ir;
int *n_clippings;
float **ringbuffer;
float **temp_src;
} ThreadData;
static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
SOFAlizerContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *in = td->in, *out = td->out;
int offset = jobnr;
int *write = &td->write[jobnr];
const int *const delay = td->delay[jobnr];
const float *const ir = td->ir[jobnr];
int *n_clippings = &td->n_clippings[jobnr];
float *ringbuffer = td->ringbuffer[jobnr];
float *temp_src = td->temp_src[jobnr];
const int n_samples = s->sofa.n_samples; /* length of one IR */
const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */
float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */
int in_channels = in->channels; /* number of input channels */
/* ring buffer length is: longest IR plus max. delay -> next power of 2 */
int buffer_length = s->buffer_length;
/* -1 for AND instead of MODULO (applied to powers of 2): */
uint32_t modulo = (uint32_t)buffer_length - 1;
float *buffer[10]; /* holds ringbuffer for each input channel */
int wr = *write;
int read;
int i, j, l;
dst += offset;
for (l = 0; l < in_channels; l++) {
/* get starting address of ringbuffer for each input channel */
buffer[l] = ringbuffer + l * buffer_length;
}
for (i = 0; i < in->nb_samples; i++) {
const float *temp_ir = ir; /* using same set of IRs for each sample */
*dst = 0;
for (l = 0; l < in_channels; l++) {
/* write current input sample to ringbuffer (for each channel) */
*(buffer[l] + wr) = src[s->reorder[l]];
}
/* loop goes through all channels to be convolved (excl. LFE): */
for (l = 0; l < s->n_conv; l++) {
const float *const bptr = buffer[l];
/* current read position in ringbuffer: input sample write position
* - delay for l-th ch. + diff. betw. IR length and buffer length
* (mod buffer length) */
read = (wr - *(delay + l) - (n_samples - 1) + buffer_length) & modulo;
for (j = 0; j < n_samples; j++)
temp_src[j] = bptr[(read + j) & modulo];
/* multiply signal and IR, and add up the results */
dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples);
temp_ir += n_samples;
}
if (s->lfe) { /* LFE */
/* apply gain to LFE signal and add to output buffer */
*dst += *(buffer[s->n_conv] + wr) * s->gain_lfe;
}
/* clippings counter */
if (fabs(*dst) > 1)
*n_clippings += 1;
/* move output buffer pointer by +2 to get to next sample of processed channel: */
dst += 2;
src += in_channels;
wr = (wr + 1) & modulo; /* update ringbuffer write position */
}
*write = wr; /* remember write position in ringbuffer for next call */
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
SOFAlizerContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int n_clippings[2] = { 0 };
ThreadData td;
AVFrame *out;
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
td.in = in; td.out = out; td.write = s->write;
td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2);
emms_c();
/* display error message if clipping occured */
if (n_clippings[0] + n_clippings[1] > 0) {
av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
n_clippings[0] + n_clippings[1], out->nb_samples * 2);
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int query_formats(AVFilterContext *ctx)
{
struct SOFAlizerContext *s = ctx->priv;
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
int ret, sample_rates[] = { 48000, -1 };
static const uint64_t channel_layouts[] = { AV_CH_LAYOUT_MONO,
AV_CH_LAYOUT_STEREO,
AV_CH_LAYOUT_2POINT1,
AV_CH_LAYOUT_SURROUND,
AV_CH_LAYOUT_2_1,
AV_CH_LAYOUT_4POINT0,
AV_CH_LAYOUT_QUAD,
AV_CH_LAYOUT_2_2,
AV_CH_LAYOUT_3POINT1,
AV_CH_LAYOUT_5POINT0_BACK,
AV_CH_LAYOUT_5POINT0,
AV_CH_LAYOUT_4POINT1,
AV_CH_LAYOUT_5POINT1_BACK,
AV_CH_LAYOUT_5POINT1,
AV_CH_LAYOUT_6POINT0,
AV_CH_LAYOUT_HEXAGONAL,
AV_CH_LAYOUT_6POINT1,
AV_CH_LAYOUT_6POINT1_BACK,
AV_CH_LAYOUT_7POINT0,
AV_CH_LAYOUT_7POINT1,
AV_CH_LAYOUT_OCTAGONAL,
0, };
ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
if (ret)
return ret;
ret = ff_set_common_formats(ctx, formats);
if (ret)
return ret;
layouts = ff_make_formatu64_list(channel_layouts);
if (!layouts)
return AVERROR(ENOMEM);
ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
if (ret)
return ret;
layouts = NULL;
ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO);
if (ret)
return ret;
ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts);
if (ret)
return ret;
sample_rates[0] = s->sample_rate;
formats = ff_make_format_list(sample_rates);
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_samplerates(ctx, formats);
}
static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
{
struct SOFAlizerContext *s = ctx->priv;
const int n_samples = s->sofa.n_samples;
int n_conv = s->n_conv; /* no. channels to convolve (excl. LFE) */
int delay_l[10]; /* broadband delay for each IR */
int delay_r[10];
int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */
float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */
float *data_ir_l = NULL;
float *data_ir_r = NULL;
int offset = 0; /* used for faster pointer arithmetics in for-loop */
int m[s->n_conv]; /* measurement index m of IR closest to required source positions */
int i, j, azim_orig = azim;
if (!s->sofa.ncid) { /* if an invalid SOFA file has been selected */
av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n");
return AVERROR_INVALIDDATA;
}
/* get temporary IR for L and R channel */
data_ir_l = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_l));
data_ir_r = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_r));
if (!data_ir_r || !data_ir_l) {
av_free(data_ir_l);
av_free(data_ir_r);
return AVERROR(ENOMEM);
}
for (i = 0; i < s->n_conv; i++) {
/* load and store IRs and corresponding delays */
azim = (int)(s->speaker_pos[i] + azim_orig) % 360;
/* get id of IR closest to desired position */
m[i] = find_m(s, azim, elev, radius);
/* load the delays associated with the current IRs */
delay_l[i] = *(s->sofa.data_delay + 2 * m[i]);
delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1);
offset = i * n_samples; /* no. samples already written */
for (j = 0; j < n_samples; j++) {
/* load reversed IRs of the specified source position
* sample-by-sample for left and right ear; and apply gain */
*(data_ir_l + offset + j) = /* left channel */
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin;
*(data_ir_r + offset + j) = /* right channel */
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin;
}
av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n",
m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i]));
}
/* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */
memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * n_samples);
memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * n_samples);
av_free(data_ir_l); /* free temporary IR memory */
av_free(data_ir_r);
memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv);
memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv);
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
SOFAlizerContext *s = ctx->priv;
int ret;
/* load SOFA file, */
/* initialize file IDs to 0 before attempting to load SOFA files,
* this assures that in case of error, only the memory of already
* loaded files is free'd */
s->sofa.ncid = 0;
ret = load_sofa(ctx, s->filename, &s->sample_rate);
if (ret) {
/* file loading error */
av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename);
} else { /* no file loading error, resampling not required */
av_log(ctx, AV_LOG_DEBUG, "File '%s' loaded.\n", s->filename);
}
if (ret) {
av_log(ctx, AV_LOG_ERROR, "No valid SOFA file could be loaded. Please specify valid SOFA file.\n");
return ret;
}
s->fdsp = avpriv_float_dsp_alloc(0);
if (!s->fdsp)
return AVERROR(ENOMEM);
return 0;
}
static inline unsigned clz(unsigned x)
{
unsigned i = sizeof(x) * 8;
while (x) {
x >>= 1;
i--;
}
return i;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
SOFAlizerContext *s = ctx->priv;
int nb_input_channels = inlink->channels; /* no. input channels */
int n_max_ir = 0;
int n_current;
int n_max = 0;
int ret;
/* gain -3 dB per channel, -6 dB to get LFE on a similar level */
s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6) / 20 * M_LN10);
s->lfe = !!(inlink->channel_layout & AV_CH_LOW_FREQUENCY);
/* LFE is an input channel but requires no convolution */
s->n_conv = nb_input_channels - s->lfe;
/* get size of ringbuffer (longest IR plus max. delay) */
/* then choose next power of 2 for performance optimization */
n_current = s->sofa.n_samples + max_delay(&s->sofa);
if (n_current > n_max) {
/* length of longest IR plus max. delay (in all SOFA files) */
n_max = n_current;
/* length of longest IR (without delay, in all SOFA files) */
n_max_ir = s->sofa.n_samples;
}
/* buffer length is longest IR plus max. delay -> next power of 2
(32 - count leading zeros gives required exponent) */
s->buffer_length = exp2(32 - clz((uint32_t)n_max));
/* Allocate memory for the impulse responses, delays and the ringbuffers */
/* size: (longest IR) * (number of channels to convolute), without LFE */
s->data_ir[0] = av_malloc_array(n_max_ir, sizeof(float) * s->n_conv);
s->data_ir[1] = av_malloc_array(n_max_ir, sizeof(float) * s->n_conv);
/* length: number of channels to convolute */
s->delay[0] = av_malloc_array(s->n_conv, sizeof(float));
s->delay[1] = av_malloc_array(s->n_conv, sizeof(float));
/* length: (buffer length) * (number of input channels),
* OR: buffer length (if frequency domain processing)
* calloc zero-initializes the buffer */
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
/* length: number of channels to convolute */
s->speaker_pos = av_malloc_array(s->n_conv, sizeof(*s->speaker_pos));
/* memory allocation failed: */
if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[1] ||
!s->delay[0] || !s->ringbuffer[0] || !s->ringbuffer[1] ||
!s->speaker_pos)
return AVERROR(ENOMEM);
compensate_volume(ctx);
/* get speaker positions */
if ((ret = get_speaker_pos(ctx, s->speaker_pos)) < 0) {
av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
return ret;
}
/* load IRs to data_ir[0] and data_ir[1] for required directions */
/* only load IRs if time-domain convolution is used. */
if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0)
return ret;
av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
inlink->sample_rate, s->n_conv, nb_input_channels, s->buffer_length);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SOFAlizerContext *s = ctx->priv;
if (s->sofa.ncid) {
av_freep(&s->sofa.sp_a);
av_freep(&s->sofa.sp_e);
av_freep(&s->sofa.sp_r);
av_freep(&s->sofa.data_delay);
av_freep(&s->sofa.data_ir);
}
av_freep(&s->delay[0]);
av_freep(&s->delay[1]);
av_freep(&s->data_ir[0]);
av_freep(&s->data_ir[1]);
av_freep(&s->ringbuffer[0]);
av_freep(&s->ringbuffer[1]);
av_freep(&s->speaker_pos);
av_freep(&s->temp_src[0]);
av_freep(&s->temp_src[1]);
av_freep(&s->fdsp);
}
#define OFFSET(x) offsetof(SOFAlizerContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption sofalizer_options[] = {
{ "sofa", "sofa filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
{ "rotation", "set rotation" , OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -360, 360, .flags = FLAGS },
{ "elevation", "set elevation", OFFSET(elevation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -90, 90, .flags = FLAGS },
{ "radius", "set radius", OFFSET(radius), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 3, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(sofalizer);
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
{ NULL }
};
AVFilter ff_af_sofalizer = {
.name = "sofalizer",
.description = NULL_IF_CONFIG_SMALL("SOFAlizer (Spatially Oriented Format for Acoustics)."),
.priv_size = sizeof(SOFAlizerContext),
.priv_class = &sofalizer_class,
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = inputs,
.outputs = outputs,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};
......@@ -109,6 +109,7 @@ void avfilter_register_all(void)
REGISTER_FILTER(SIDECHAINGATE, sidechaingate, af);
REGISTER_FILTER(SILENCEDETECT, silencedetect, af);
REGISTER_FILTER(SILENCEREMOVE, silenceremove, af);
REGISTER_FILTER(SOFALIZER, sofalizer, af);
REGISTER_FILTER(STEREOTOOLS, stereotools, af);
REGISTER_FILTER(STEREOWIDEN, stereowiden, af);
REGISTER_FILTER(TREBLE, treble, af);
......
......@@ -289,6 +289,17 @@ AVFilterFormats *ff_make_format_list(const int *fmts)
return formats;
}
AVFilterChannelLayouts *ff_make_formatu64_list(const uint64_t *fmts)
{
MAKE_FORMAT_LIST(AVFilterChannelLayouts,
channel_layouts, nb_channel_layouts);
if (count)
memcpy(formats->channel_layouts, fmts,
sizeof(*formats->channel_layouts) * count);
return formats;
}
AVFilterChannelLayouts *avfilter_make_format64_list(const int64_t *fmts)
{
MAKE_FORMAT_LIST(AVFilterChannelLayouts,
......
......@@ -141,6 +141,9 @@ AVFilterChannelLayouts *ff_all_channel_counts(void);
av_warn_unused_result
AVFilterChannelLayouts *avfilter_make_format64_list(const int64_t *fmts);
av_warn_unused_result
AVFilterChannelLayouts *ff_make_formatu64_list(const uint64_t *fmts);
/**
* A helper for query_formats() which sets all links to the same list of channel
......
......@@ -30,7 +30,7 @@
#include "libavutil/version.h"
#define LIBAVFILTER_VERSION_MAJOR 6
#define LIBAVFILTER_VERSION_MINOR 20
#define LIBAVFILTER_VERSION_MINOR 21
#define LIBAVFILTER_VERSION_MICRO 100
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment