fft-test.c 6.46 KB
Newer Older
Michael Niedermayer's avatar
Michael Niedermayer committed
1 2 3 4 5
/**
 * @file fft-test.c
 * FFT and MDCT tests.
 */

6 7
#include "dsputil.h"
#include <math.h>
Fabrice Bellard's avatar
Fabrice Bellard committed
8
#include <unistd.h>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#include <sys/time.h>

int mm_flags;

/* reference fft */

#define MUL16(a,b) ((a) * (b))

#define CMAC(pre, pim, are, aim, bre, bim) \
{\
   pre += (MUL16(are, bre) - MUL16(aim, bim));\
   pim += (MUL16(are, bim) + MUL16(bre, aim));\
}

FFTComplex *exptab;

void fft_ref_init(int nbits, int inverse)
{
    int n, i;
    float c1, s1, alpha;

    n = 1 << nbits;
    exptab = av_malloc((n / 2) * sizeof(FFTComplex));

    for(i=0;i<(n/2);i++) {
        alpha = 2 * M_PI * (float)i / (float)n;
        c1 = cos(alpha);
        s1 = sin(alpha);
        if (!inverse)
            s1 = -s1;
        exptab[i].re = c1;
        exptab[i].im = s1;
    }
}

void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
{
    int n, i, j, k, n2;
    float tmp_re, tmp_im, s, c;
    FFTComplex *q;

    n = 1 << nbits;
    n2 = n >> 1;
    for(i=0;i<n;i++) {
        tmp_re = 0;
        tmp_im = 0;
        q = tab;
        for(j=0;j<n;j++) {
            k = (i * j) & (n - 1);
            if (k >= n2) {
                c = -exptab[k - n2].re;
                s = -exptab[k - n2].im;
            } else {
                c = exptab[k].re;
                s = exptab[k].im;
            }
            CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
            q++;
        }
        tabr[i].re = tmp_re;
        tabr[i].im = tmp_im;
    }
}

void imdct_ref(float *out, float *in, int n)
{
    int k, i, a;
    float sum, f;

    for(i=0;i<n;i++) {
        sum = 0;
        for(k=0;k<n/2;k++) {
            a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
            f = cos(M_PI * a / (double)(2 * n));
            sum += f * in[k];
        }
        out[i] = -sum;
    }
}

/* NOTE: no normalisation by 1 / N is done */
void mdct_ref(float *output, float *input, int n)
{
    int k, i;
    float a, s;

    /* do it by hand */
    for(k=0;k<n/2;k++) {
        s = 0;
        for(i=0;i<n;i++) {
            a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
            s += input[i] * cos(a);
        }
        output[k] = s;
    }
}


float frandom(void)
{
    return (float)((random() & 0xffff) - 32768) / 32768.0;
}

112
int64_t gettime(void)
113 114 115
{
    struct timeval tv;
    gettimeofday(&tv,NULL);
116
    return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
117 118 119 120 121 122 123 124
}

void check_diff(float *tab1, float *tab2, int n)
{
    int i;

    for(i=0;i<n;i++) {
        if (fabsf(tab1[i] - tab2[i]) >= 1e-3) {
125
            av_log(NULL, AV_LOG_ERROR, "ERROR %d: %f %f\n", 
126 127 128 129 130 131 132 133
                   i, tab1[i], tab2[i]);
        }
    }
}


void help(void)
{
134
    av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
           "-h     print this help\n"
           "-s     speed test\n"
           "-m     (I)MDCT test\n"
           "-i     inverse transform test\n"
           "-n b   set the transform size to 2^b\n"
           );
    exit(1);
}



int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tabtmp, *tab2;
    int it, i, c;
    int do_speed = 0;
    int do_mdct = 0;
    int do_inverse = 0;
    FFTContext s1, *s = &s1;
    MDCTContext m1, *m = &m1;
    int fft_nbits, fft_size;

    mm_flags = 0;
    fft_nbits = 9;
    for(;;) {
        c = getopt(argc, argv, "hsimn:");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            do_mdct = 1;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        }
    }

    fft_size = 1 << fft_nbits;
    tab = av_malloc(fft_size * sizeof(FFTComplex));
    tab1 = av_malloc(fft_size * sizeof(FFTComplex));
    tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
    tabtmp = av_malloc(fft_size / 2 * sizeof(FFTSample));
    tab2 = av_malloc(fft_size * sizeof(FFTSample));

    if (do_mdct) {
        if (do_inverse)
192
            av_log(NULL, AV_LOG_INFO,"IMDCT");
193
        else
194
            av_log(NULL, AV_LOG_INFO,"MDCT");
Fabrice Bellard's avatar
Fabrice Bellard committed
195
        ff_mdct_init(m, fft_nbits, do_inverse);
196 197
    } else {
        if (do_inverse)
198
            av_log(NULL, AV_LOG_INFO,"IFFT");
199
        else
200
            av_log(NULL, AV_LOG_INFO,"FFT");
201
        ff_fft_init(s, fft_nbits, do_inverse);
202 203
        fft_ref_init(fft_nbits, do_inverse);
    }
204
    av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
205 206 207 208 209 210 211 212 213

    /* generate random data */

    for(i=0;i<fft_size;i++) {
        tab1[i].re = frandom();
        tab1[i].im = frandom();
    }

    /* checking result */
214
    av_log(NULL, AV_LOG_INFO,"Checking...\n");
215 216 217 218

    if (do_mdct) {
        if (do_inverse) {
            imdct_ref((float *)tab_ref, (float *)tab1, fft_size);
Fabrice Bellard's avatar
Fabrice Bellard committed
219
            ff_imdct_calc(m, tab2, (float *)tab1, tabtmp);
220 221 222 223
            check_diff((float *)tab_ref, tab2, fft_size);
        } else {
            mdct_ref((float *)tab_ref, (float *)tab1, fft_size);
            
Fabrice Bellard's avatar
Fabrice Bellard committed
224
            ff_mdct_calc(m, tab2, (float *)tab1, tabtmp);
225 226 227 228 229

            check_diff((float *)tab_ref, tab2, fft_size / 2);
        }
    } else {
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
230 231
        ff_fft_permute(s, tab);
        ff_fft_calc(s, tab);
232 233 234 235 236 237 238 239
        
        fft_ref(tab_ref, tab1, fft_nbits);
        check_diff((float *)tab_ref, (float *)tab, fft_size * 2);
    }

    /* do a speed test */

    if (do_speed) {
240
        int64_t time_start, duration;
241 242
        int nb_its;

243
        av_log(NULL, AV_LOG_INFO,"Speed test...\n");
244 245 246 247 248 249 250
        /* we measure during about 1 seconds */
        nb_its = 1;
        for(;;) {
            time_start = gettime();
            for(it=0;it<nb_its;it++) {
                if (do_mdct) {
                    if (do_inverse) {
Fabrice Bellard's avatar
Fabrice Bellard committed
251
                        ff_imdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
252
                    } else {
Fabrice Bellard's avatar
Fabrice Bellard committed
253
                        ff_mdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
254 255 256
                    }
                } else {
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
257
                    ff_fft_calc(s, tab);
258 259 260 261 262 263 264
                }
            }
            duration = gettime() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
265
        av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n", 
266 267 268 269 270 271
               (double)duration / nb_its, 
               (double)duration / 1000000.0,
               nb_its);
    }
    
    if (do_mdct) {
Fabrice Bellard's avatar
Fabrice Bellard committed
272
        ff_mdct_end(m);
273
    } else {
274
        ff_fft_end(s);
275 276 277
    }
    return 0;
}